SEARCH

SEARCH BY CITATION

References

  • Alexandre, A., J. D. Meunier, F. Colin, and J. M. Koud (1997), Plant impact on the biogeochemical cycle of silicon and related weathering processes, Geochim. Cosmochim. Acta, 61, 677682.
  • April, R. R., R. Newton, and L. T. Coles (1986), Chemical weathering in two Adirondack watersheds: Past and present-day rates, Geol. Soc. Am. Bull., 97, 12321238.
  • Asano, Y., T. Uchida, and N. Ohte (2003), Hydrologic and geochemical influences on the dissolved silica concentration in natural water in a steep headwater catchment, Geochim. Cosmochim. Acta, 67, 19731989.
  • Berner, R. A., A. C. Lasaga, and R. M. Garrels (1983), The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641683.
  • Bluth, G. J. S., and L. R. Kump (1994), Lithologic and climatologic controls of river chemistry, Geochim. Cosmochim. Acta, 58, 23412359.
  • Brady, P. V. (1991), The effect of silicate weathering on global temperature and atmospheric CO2, J. Geophys. Res., 96, 18,10118,106.
  • Brady, P. V., and S. A. Carroll (1994), Direct effects of CO2 and temperature on silicate weathering: Possible implications for climate control, Geochim. Cosmochim. Acta, 58, 18531863.
  • Brady, P. V., and J. V. Walther (1989), Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C, Geochim. Cosmochim. Acta, 53, 28232830.
  • Buttle, J. M., and D. L. Peters (1997), Inferring hydrological processes in a temperate basin using isotopic and geochemical hydrograph separation: A re-evaluation, Hydrol. Processes, 11, 557573.
  • Conley, D. J. (2002), Terrestrial ecosystems and the global biogeochemical silica cycle, Global Biogeochem. Cycles, 16(4), 1121, doi:10.1029/2002GB001894.
  • Conners, J. A. (1988), Shenandoah National Park: An Interpretive Guide, McDonald and Woodard, Blacksburg, Va.,
  • Davidson, C. B., K. W. Gottschalk, and J. E. Johnson (1999), Tree morality following defoliation by the European gypsy moth (Lymantria dispar L.) in the United States: A review, For. Sci., 45(1), 7484.
  • Davis, O. D., N. F. Breitner, and P. J. Harrison (1978), Continuous culture of marine diatoms under silicon limitation: 3. A model of Si-limited diatom growth, Limnol. Oceanogr., 23, 4152.
  • Davis, S. N. (1964), Silica in streams and groundwater, Am. J. Sci., 262, 870891.
  • Derry, L. A., C. Kurtz, K. Ziegler, O. A. Chadwick, and E. F. Kelley (2005), Biological control of terrestrial silica cycling and export fluxes in watersheds, Nature, 433, 728731.
  • Driscoll, C. T., G. E. Likens, L. O. Hedin, J. S. Eaton, and F. H. Bormann (1989), Changes in the chemistry of surface waters, Environ. Sci. Technol., 23, 137142.
  • Elkinton, J. S., and A. M. Liebhold (1990), Population dynamics of gypsy moth in North America, Annu. Rev. Entomol., 35, 571596.
  • Eshleman, K. N., R. P. Morgan II, J. R. Webb, F. A. Deviney, and J. N. Galloway (1998), Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: Role of insect defoliation, Water Resour. Res., 34(8), 20052016.
  • Fulweiler, R. W., and S. W. Nixon (2005), Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river, Biogeochemistry, 74, 115130.
  • Furman, T., P. Thompson, and B. Hatchl (1998), Primary mineral weathering in the central Appalachians: A mass balance approach, Geochim. Cosmochim. Acta, 62, 28892904.
  • Gathright, T. M. (1976), Geology of the Shenandoah National Park, Virginia, Bull. 86, 93 pp., Va. Div. Miner. Res., Charlottesville.
  • Hirsch, R. M., and J. R. Slack (1984), A nonparametric trend test for seasonal data with serial dependence, Water Resour. Res., 20(6), 727732.
  • Hornberger, G. M., T. M. Scanlon, and J. P. Raffensperger (2001), Modeling transport of dissolved silica in a forested headwater catchment: The effect of hydrological and chemical time scales on hysteresis in the concentration-discharge relationship, Hydrol. Processes, 15, 20292038.
  • House, W. A., D. V. Leach, and P. D. Armitage (2001), Study of dissolved silicon and nitrate dynamics in a freshwater stream, Water Res., 35, 27492757.
  • Jedlicka, J., J. Vandermeer, K. Aviles-Vazquez, O. Barros, and I. Perfecto (2004), Gypsy moth defoliation of oak trees and a positive response of red maple and black cherry: An example of indirect positive response, Am. Midl. Nat., 152, 231236.
  • Kennedy, V. C. (1971), Silica variation in stream water with time and discharge, in Nonequilibrium Systems in Natural Water Chemistry, edited by J. D. Hem, pp. 94130, Am. Chem. Soc., Washington, D. C.,
  • Kilham, P. (1971), A hypothesis concerning silica and the freshwater planktonic diatoms, Limnol. Oceanogr., 16, 1018.
  • Lambert, D. (1989), The Undying Past of Shenandoah National Park, Roberts Rinehart, Boulder, Colo.,
  • Lamberti, G. A. (1996), The role of periphyton in benthic food webs, in Algal Ecology: Freshwater Benthic Systems, edited by R. J. Stevenson et al., pp. 533572, Elsevier, New York.
  • Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher, and R. S. Pierce (1970), Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook Watershed Ecosystem, Ecol. Monogr., 40, 2347.
  • Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton, and N. M. Johnson (1977), Biogeochemistry of a Forested Ecosystem, Springer, New York.
  • Martin-Jezequel, V., M. Hildebrand, and M. A. Brzezinski (2000), Silicon metabolism in diatoms: Implications for growth, J. Phycol., 36, 821840.
  • Mayer, M. S., and G. E. Likens (1987), The importance of algae in a shaded headwater stream as food for an abundant caddisfly (Trichoptera), J. North Am. Benth. Soc., 6, 262269.
  • McKeague, J. A., and M. G. Cline (1963), Silica in soil solutions: I. The form and concentration of dissolved silica in aqueous extracts of some soils, Can. J. Soil Sci., 43, 7082.
  • Muzika, R. M., and A. M. Liebhold (1999), Changes in radial increment of host and nonhost species with gypsy moth defoliation, Can. J. For. Res., 29, 13651373.
  • Oliva, P., J. Viers, and B. Dupre (2003), Chemical weathering in granitic environments, Chem. Geol., 202, 225256.
  • Parkhurst, D. L., and C. A. J. Appelo (1999), User's guide to PHREEQC (Version 2)–A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U. S. Geol. Surv. Water Resour. Invest. Rep. 99-4259, 310 pp.
  • Perkins, R. G., and G. J. C. Underwood (2000), Gradients of chlorophyll A and water chemistry along an eutrophic reservoir with determination of the limiting nutrient by in situ nutrient addition, Water Res., 34, 713724.
  • Rice, K. C., and O. P. Bricker (1995), Seasonal cycles of dissolved constituents in streamwater in two forested catchments in the mid-Atlantic region of the eastern USA, J. Hydrol., 170, 138158.
  • Round, F. E., R. M. Crawford, and D. G. Mann (1990), The Diatoms: Biology and Morphology of the Genera, Cambridge Univ. Press, New York.
  • Ryan, P. F., G. M. Hornberger, B. J. Cosby, J. N. Galloway, J. R. Webb, and E. B. Rastetter (1989), Changes in the chemical composition of streamwater in two catchments in Shenandoah National Park, Virginia, Water Resour. Res., 25(10), 20912099.
  • Scanlon, T. M., J. P. Raffensperger, and G. M. Hornberger (2001), Modeling transport of dissolved silica in a forested headwater catchment: Implications for defining the hydrochemical response of observed flow pathways, Water Resour. Res., 37(4), 10711082.
  • Shaffer, P. W. (1984), Acid precipitation: Sulfate dynamics and the role of sulfate on cation mobility in White Oak Run watershed, Shenandoah National Park, Ph.D. dissertation, Univ. of Va., Charlottesville.
  • Skjelkvåle, B. L., et al. (2005), Regional scale evidence for improvements in surface water chemistry 1990–2001, Environ. Pollut., 137(1), 165176.
  • Stoddard, J. L., T. S. Traaen, and B. L. Skjelkvåle (2001), Assessment of nitrogen leaching at ICP-waters sites (Europe and North America), Water Air Soil Pollut., 130, 781786.
  • Subagyono, K., T. Tanaka, Y. Hamada, and M. Tsujimura (2005), Defining hydrochemical evolution of streamflow through flowpath dynamics in Kawakami headwater catchment, central Japan, Hydrol. Processes, 19, 19391965.
  • Sverdrup, H., and P. Warfvinge (1995), Estimating field weathering rates using laboratory kinetics, in Chemical Weathering Rates of Silicate Minerals, edited by A. F. White, and S. L. Brantley, Rev. Mineral. Geochem., 31(1), 485541.
  • Walker, J. C. G., P. B. Hays, and J. F. Kasting (1981), A negative feedback mechanism for the long-term stabilization of Earth's temperature, J. Geophys. Res., 86, 97769782.
  • Wall, G. R., P. J. Philips, and K. Riva-Murray (1998), Seasonal and spatial patterns of nitrate and silica concentrations in Canajoharie Creek, New York, J. Environ. Qual., 27, 381389.
  • Webb, J. R., B. J. Cosby, J. N. Galloway, and G. M. Hornberger (1989), Acidification of native brook trout streams in Virginia, Water Resour. Res., 25(6), 13671377.
  • Webb, J. R., B. J. Cosby, F. A. Deviney Jr., K. N. Eshleman, and J. N. Galloway (1995), Change in the acid-base status of an Appalachian mountain catchment following forest defoliation by the gypsy moth, Water Air Soil Pollut., 85, 535540.
  • Webb, J. R., B. J. Cosby, F. A. Deviney Jr., J. N. Galloway, S. W. Maben, and A. J. Bulger (2004), Are brook trout streams in Western Virginia and Shenandoah National Park recovering from acidification? Environ. Sci. Technol., 38, 40914096.
  • Wels, C. (1991), Hydrograph separation—A comparison of geochemical and isotopic tracers, J. Hydrol., 122, 253274.
  • Young, J., G. Fleming, P. Townsend, and J. Foster (2005), Vegetation communities in relation to environmental gradients in Shenandoah National Park, final report, 73 pp., Veg. Mapping Program, Natl. Park Serv., Kearneysville, W. Va.,