SEARCH

SEARCH BY CITATION

References

  • Abrams, M. (2000), The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform, Int. J. Remote Sens., 21, 847859.
  • Bao, H., K. A. Jenkins, M. Khachaturyan, and G. Chong-Díaz (2004), Different sulfate sources and their post-depositional migration in Atacama soils, Earth Planet. Sci. Lett., 224, 577587.
  • Boardman, J. W., F. A. Kruse, and R. O. Green (1995), Mapping target signatures via partial unmixing of AVIRIS data, in Proceedings of 5th JPL Airborne Earth Science Workshop, JPL Publ., 95-1, 1, 2326.
  • Cabrol, N. A., et al. (2007), Life in the Atacama: Searching for life with rovers (science overview), J. Geophys. Res., 112, G04S02, doi:10.1029/2006JG000298.
  • Carta Geologica de Chile (1978), escala 1:250,000, no. 30, Hoja Antofagasta, Inst. de Invest. Geol., Chile.
  • Carta Geologica de Chile (1981), escala 1:250,000, no. 51, Hoja Quillagua, Inst. de Invest. Geol., Chile.
  • Christensen, P. R., J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. D. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov (2000), A thermal emission spectral library of rock-forming minerals, J. Geophys. Res., 105, 97359739.
  • Christensen, P. R., et al. (2003), The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission, Space Sci. Rev., 110, 85130.
  • Christensen, P. R., et al. (2004), Initial results from the Mini-TES experiment in Gusev Crater from the Spirit rover, Science, 305, 837842.
  • Clark, R. N., G. A. Swayze, A. J. Gallagher, T. V. V. King, and W. M. Calvin (1993), The U.S. Geological Survey, Digital Spectral Library: version 1: 0.2 to 3.0 microns, U.S. Geol. Surv. Open File Rep. 93-592, 1340 pp.
  • Cook, M., B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen (2001), IKONOS Technical Performance Assessment, Proc. SPIE, 4381(10), 1620.
  • Cooper, C. D., and J. F. Mustard (1999), Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil, Icarus, 142, 557570.
  • Dingman, R. J. (1967), Geology and ground-water resources of the northern part of the Salar de Atacama Antofagasta Province, Chile, U.S. Geol. Surv. Bull. 1219, 56 pp.
  • Duff, M. C., J. U. Coughlin, and D. B. Hunter (2002), Uranium co-precipitation with iron oxide minerals, Geochim. Cosmochim. Acta, 66, 35333547.
  • Dunai, T. J., G. A. González López, and J. Juze-Larré (2005), Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms, Geology, 33, 321324.
  • Escobar, T. F., A. G. Puig, and G. J. Muzzio (1980), Mapa geológico de Chile, escala 1:1,000,000, Dep. de Geol. General, Santigo, Chile.
  • Feely, K. C., and P. R. Christensen (1999), Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks, J. Geophys. Res., 104, 24,19524,210.
  • Gillespie, A., S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle (1998), A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Trans. Geosci. Remote Sens., 36, 11131126.
  • Gilmore, M. S., R. Castaño, B. Bornstein, and J. Greenwood (2007), Autonomous mineral detectors for visible/near-infrared spectrometers at Mars, paper presented at 7th International Conference on Mars.
  • Green, A. A., M. Berman, P. Switzer, and M. D. Craig (1988), A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Trans. Geosci. Remote Sens., 26, 6574.
  • Grove, C. I., S. J. Hook, and E. D. Paylor (1992), Laboratory reflectance spectra for 160 minerals 0.4–2.5 micrometers, JPL Publ., 92-2.
  • Hardgrove, C., J. Moersch, D. Drake, J. Piatek, D. Wettergreen, and N. A. Cabrol (2006), Field tests and ground truthing of a surface-based neutron detector in the Atacama Desert, Chile, Lunar Planet. Sci. Conf., XXXVII, Abstract 2320.
  • Hartley, A. J., and G. Chong (2002), Late Pliocene age for the Atacama Desert: Implications for the desertification of western South America, Geology, 30, 4346.
  • Horton, K. A., J. R. Johnson, and P. G. Lucey (1998), Infrared measurements of pristine and disturbed soils. 2. Environmental effects and field data reduction, Remote Sens. Environ., 64, 4752.
  • Lane, M. D. (2007), Midinfrared emission spectroscopy of sulfate and sulfate-bearing minerals, Am. Mineral., 92, 118.
  • Moersch, J. E., and P. R. Christensen (1995), Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra, J. Geophys. Res., 100, 74657477.
  • Moersch, J. E., and D. M. Drake (2003), Neutron detector for Mars rover missions, paper presented at 3rd International Conference in Mars Polar Science and Exploration.
  • Mustard, J. F., and J. E. Hays (1997), Effects of hyperfine particles on reflectance spectra from 0.3 to 25 μm, Icarus, 125, 145163.
  • Navarro-González, R., et al. (2003), Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life, Science, 302, 10181021.
  • Palacios, C., N. Guerra, B. Townley, A. Lahsen, and M. Parada (2005), Copper geochemistry in salt from evaporite soils, Coastal Range of the Atacama Desert, northern Chile: an exploration tool for blind Cu deposits, Geochem. Explor. Environ. A, 5, 371378.
  • Pearlman, J. S., P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. T. Carman (2003), Hyperion, a space-based imaging spectrometer, IEEE Trans. Geosci. Remote Sens., 41, 11601173.
  • Pelowitz, D. B. (Ed.) (2005), MCNPX user's manual version 2.5.0, Rep. LA-CP-05-0369, Los Alamos Natl. Lab., Los Alamos, N. M.,
  • Pueyo, J. J., G. Chong, and A. Jensen (2001), Neogene evaporites in desert volcanic environments: Atacama Desert, northern Chile, Sedimentology, 48, 14111431.
  • Ramsey, M. S., and P. R. Christensen (1998), Mineral abundance determination: Quantitative deconvolution of thermal emission spectra, J. Geophys. Res., 103, 577596.
  • Reutter, K.-J., E. Scheuber, and G. Chong (1996), The precordilleran fault system of Chuquicamata, northern Chile: Evidence for reversals along arc-parallel strike-slip faults, Tectonophysics, 259, 213228.
  • Ruff, S. W. (2004), Spectral evidence for zeolites in the dust on Mars, Icarus, 131, 131143.
  • Salisbury, J. W., L. S. Walter, N. Vergo, and D. M. D'Aria (1991), Infrared (2.1–25 Micrometers) Spectra of Minerals, 294 pp., Johns Hopkins Univ. Press, Baltimore, Md.,
  • Squyres, S. W., et al. (2006), Two years at Meridiani Planum: Results from the Opportunity rover, Science, 313, 14031407.
  • Stoertz, G. E., and G. E. Ericksen (1974), Geology of salars in northern Chile, U.S. Geol. Surv. Prof. Pap. 811, 75 pp.
  • Thomas, G. W., et al. (2007), Comparing different methods for assessing ground truth of rover data analysis for the 2005 season of the Life in the Atacama Project, J. Geophys. Res. 112, G04S09, doi:10.1029/2006JG000318.
  • Vincent, R. K. (1997), Fundamentals of Geological and Environmental Remote Sensing, 370 pp., Prentice-Hall, Upper Saddle River, N. J.,
  • Warren-Rhodes, K. A., K. Rhodes, S. Pointing, S. Ewing, D. Lacap, B. Gómez-Silva, R. Amundson, E. I. Friedmann, and C. P. McKay (2006), Hypolithic cyanobacteria, dry limit of photosynthesis and microbial ecology in the hyperarid Atacama Desert, Microbial Ecol. doi:10.1007/s00248-006-9055-7.
  • Warren-Rhodes, K., et al. (2007a), Searching for microbial life remotely: Satellite-to-rover habitat mapping in the Atacama Desert, Chile, J. Geophys. Res., 112, G04S05, doi:10.1029/2006JG000283.
  • Warren-Rhodes, K.et al. (2007b), Robotic ecological mapping: Habitats and the search for life in the Atacama Desert, J. Geophys. Res. 112, G04S06, doi:10.1029/2006JG000301.
  • Warren-Rhodes, K. A., J. L. Dungan, J. Piatek, K. Stubbs, B. Gomez-Silva, and C. McKay (2007c), Ecology and spatial pattern of cyanobacterial community island patches in the Atacama Desert, Chile, J. Geophys. Res. 112, G04S15, doi:10.1029/2006JG000305.
  • Wierzchos, J., C. Ascaso, and C. P. McKay (2006), Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert, Astrobiology, 6, 18.