SEARCH

SEARCH BY CITATION

References

  • Aagaard, K., and E. C. Carmack (1989), The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res., 94(C10), 14,48514,498.
  • Amon, R. M. W., and B. Meon (2004), The biogeochemistry of dissolved organic matter and nutrients in two large Arctic estuaries and potential implications for our understanding of the Arctic Ocean system, Mar. Chem., 92(1–4), 311330.
  • Bauch, D., P. Schlosser, and R. G. Fairbanks (1995), Fresh-water balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of (H20)-O-18, Prog. Oceanogr., 35(1), 5380.
  • Benner, R., P. Louchouarn, and R. M. W. Amon (2005), Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic, Global Biogeochem. Cycles, 19(2), GB2025, doi:10.1029/2004GB002398.
  • Brooks, M. L., J. S. Meyer, and D. M. McKnight (2007), Photooxidation of wetland and riverine dissolved organic matter: altered copper complexation and organic composition, Hydrobiologia, 579, 95113.
  • Brown, A., D. M. McKnight, Y. P. Chin, E. C. Roberts, and M. Uhle (2004), Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica, Mar. Chem., 89(1–4), 327337.
  • Chin, Y. P., G. Aiken, and E. Oloughlin (1994), Molecular-weight, polydispersity, and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol., 28(11), 18531858.
  • Coble, P. G., S. A. Green, N. V. Blough, and R. B. Gagosian (1990), Characterization of dissolved organic-matter in the Black Sea by fluorescence spectroscopy, Nature, 348(6300), 432435.
  • Cory, R. M., and D. M. McKnight (2005), Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter, Environ. Sci. Technol., 39(21), 81428149.
  • Crump, B. C., G. W. Kling, M. Bahr, and J. E. Hobbie (2003), Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source, Appl. Environ. Microbiol., 69(4), 22532268.
  • Dria, K. J., J. R. Sachleben, and P. G. Hatcher (2002), Solid-state carbon-13 nuclear magnetic resonance of humic acids at high magnetic field strengths, J. Environ. Qual., 31(2), 393401.
  • Fulton, J. R., D. M. McKnight, C. M. Foreman, R. M. Cory, C. Stedmon, and E. Blunt (2004), Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake, Aquat. Sci., 66(1), 2746.
  • Gibson, J. A. E., W. F. Vincent, B. Nieke, and R. Pienitz (2000), Control of biological exposure to UV radiation in the Arctic Ocean: Comparison of the roles of ozone and riverine dissolved organic matter, Arctic, 53(4), 372382.
  • Hood, E., M. W. Williams, and D. M. McKnight (2005), Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes, Biogeochemistry, 74(2), 231255.
  • Hu, C. M., F. E. Muller-Karger, and R. G. Zepp (2002), Absorbance, absorption coefficient, and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts, Limnol. Oceanogr., 47(4), 12611267.
  • Huffman, E. W. D., and H. A. Stuber (1985), Analytical methodology for elemental analysis of humic substances, in Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization, 1st ed., edited by G. R. Aiken et al., pp. 433455, John Wiley, Hoboken, N. J.,
  • Judd, K. E., and G. W. Kling (2002), Production and export of dissolved C in arctic tundra mesocosms: The roles of vegetation and water flow, Biogeochemistry, 60(3), 213234.
  • Kling, G. W., G. W. Kipphut, M. M. Miller, and W. J. O'Brien (2000), Integration of lakes and streams in a landscape perspective: The importance of material processing on spatial patterns and temporal coherence, Freshwater Biol., 43(3), 477497.
  • Leifer, A. (1988), The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice, 1st ed., 304 pp., Am. Chem. Soc., Washington, D. C.,
  • Ma, X. D., and S. A. Green (2004), Photochemical transformation of dissolved organic carbon in Lake Superior—An in-situ experiment, J. Great Lakes Res., 30, 97112.
  • McKnight, D. M., and G. R. Aiken (1998), Sources and age of aquatic humus, in Aquatic Humic Substances, 1st ed., edited by D. Hessen, and L. Tranvik, pp. 939, Springer, Berlin.
  • McKnight, D. M., R. Harnish, R. L. Wershaw, J. S. Baron, and S. Schiff (1997), Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park, Biogeochemistry, 36(1), 99124.
  • McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, and D. T. Andersen (2001), Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnol. Oceanogr., 46(1), 3848.
  • McKnight, D. M., E. Hood, and L. Klapper (2003), Trace organic moieties in dissolved organic matter in natural waters, in Interactivity of Dissolved Organic Matter, 1st ed., edited by S. E. G. Findlay, and R. L. Sinsabaugh, pp. 7193, Academic Press, San Diego, Calif.,
  • Michaelson, G. J., C. L. Ping, G. W. Kling, and J. E. Hobbie (1998), The character and bioactivity of dissolved organic matter at thaw and in the spring runoff waters of the arctic tundra north slope, Alaska, J. Geophys. Res., 103(D22), 28,93928,946.
  • Miller, W. L., and R. G. Zepp (1995), Photochemical production of dissolved inorganic carbon from terrestrial organic matter: Significance to the oceanic organic carbon cycle, Geophys. Res. Lett., 22(4), 417420.
  • Molot, L. A., J. J. Hudson, P. J. Dillon, and S. A. Miller (2005), Effect of pH on photo-oxidation of dissolved organic carbon by hydroxyl radicals in a coloured, softwater stream, Aquat. Sci., 67(2), 189195.
  • Moran, M. A., and R. G. Zepp (1997), Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter, Limnol. Oceanogr., 42(6), 13071316.
  • Moran, M. A., W. M. Sheldon, and R. G. Zepp (2000), Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter, Limnol. Oceanogr., 45(6), 12541264.
  • O'Brien, W. J., et al. (1997), The limnology of Toolik Lake, in Alaskan Freshwaters, 1st ed., edited by A. Milner, and M. W. Oswood, pp. 61106, Springer, New York.
  • Opsahl, S., R. Benner, and R. M. W. Amon (1999), Major flux of terrigenous dissolved organic matter through the Arctic Ocean, Limnol. Oceanogr., 44(8), 20172023.
  • Pienitz, R., and W. F. Vincent (2000), Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes, Nature, 404(6777), 484487.
  • Reche, I., M. L. Pace, and J. J. Cole (2000), Modeled effects of dissolved organic carbon and solar spectra on photobleaching in lake ecosystems, Ecosystems, 3(5), 419432.
  • Rember, R. D., and J. H. Trefry (2004), Increased concentrations of dissolved trace metals and organic carbon during snowmelt in rivers of the Alaskan Arctic, Geochim. Cosmochim. Acta, 68(3), 477489.
  • Schubert, C. J., R. Stein, and S. E. Calvert (2001), Tracking nutrient and productivity variations over the last deglaciation in the Arctic Ocean, Paleoceanography, 16(2), 199211.
  • Schwede-Thomas, S. B., Y. P. Chin, K. J. Dria, P. Hatcher, E. Kaiser, and B. Sulzberger (2005), Characterizing the properties of dissolved organic matter isolated by XAD and C-18 solid phase extraction and ultrafiltration, Aquat. Sci., 67(1), 6171.
  • Smith, E. M., and R. Benner (2005), Photochemical transformations of riverine dissolved organic matter: Effects on estuarine bacterial metabolism and nutrient demand, Aquat. Microb. Ecol., 40(1), 3750.
  • Smith, R. C., and K. S. Baker (1981), Optical properties of the clearest natural waters (200–800 Nm), Appl. Opt., 20(2), 177184.
  • Solomon, S. (1999), Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37(3), 275316.
  • Stedmon, C. A., S. Markager, and R. Bro (2003), Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 82(3–4), 239254.
  • Thurman, E. M., and R. L. Malcolm (1981), Preparative isolation of aquatic humic substances, Environ. Sci. Technol., 15(4), 463466.
  • Tranvik, L. J., and S. Bertilsson (2001), Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth, Ecol. Lett., 4(5), 458463.
  • Wedin, D. A., L. L. Tieszen, B. Dewey, and J. Pastor (1995), Carbon-isotope dynamics during grass decomposition and soil organic-matter formation, Ecology, 76(5), 13831392.
  • Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper (2003), Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol., 37(20), 47024708.
  • Xie, H. X., O. C. Zafiriou, W. J. Cai, R. G. Zepp, and Y. C. Wang (2004), Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the Southeastern United States, Environ. Sci. Technol., 38(15), 41134119.
  • Yamashita, Y., and E. Tanoue (2003), Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids, Mar. Chem., 82(3–4), 255271.