Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications



[1] Fog is the most important source of water for native plants and biological soil crusts in the Atacama Desert. Since fog depends upon available moisture, an understanding of climatic patterns is essential to interpret its present-day occurrence and distribution. In this work, temperature and humidity of ambient air and collected fog water in selected sites were studied across a transect from the coast to inland of the Atacama Desert, by using automated outdoor sensors for temperature and relative humidity, and also fog collectors equipped with automated rain gauges to measure collected fog water flow rates. Field measurements were organized to determine fog and collected fog water patterns at three selected sites, namely, Coloso, Inacesa and Yungay in addition to the relative humidity and temperature variation with altitude at Coloso Mountain located within Coloso site. The results show a decreasing trend in the collected fog water flow rates from the coast toward inland locations. Daily thermal oscillations at each site are closely related to fog water collection. At Coloso Mountain, an adiabatic cooling-like effect of the wind ascending its slope was observed preferentially during nighttime. At daytime, occasional distortions observed in the temperature profiles are probably produced by a thermal driven-air convection process along the Coloso Mountain slope heated by solar radiation. The reduction in available water from fog from the coast to the inland site is consistent with the reduction in colonization rate for hypolithic cyanobacteria along this same transect.