SEARCH

SEARCH BY CITATION

References

  • Amon, R. M. W., and B. Meon (2004), The biogeochemistry of dissolved organic matter and nutrients in two large Arctic estuaries and potential implications for our understanding of the Arctic Ocean system, Mar. Chem., 92, 311330.
  • Arctic Climate Impact Assessment (ACIA) (2005), Arctic Climate Impact Assessment, 1042 pp., Cambridge Univ. Press, New York.
  • Benner, R., P. Louchouarn, and R. M. W. Amon (2005), Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic, Global Biogeochem. Cycles, 19, GB2025, doi:10.1029/2004GB002398.
  • Beven, K. J., and M. J. Kirkby (1979), A physically based variable contributing area model of basin hydrology, Hydrol. Sci. J., 24, 4369.
  • Chapin, F. S.III, et al. (2000), Feedbacks from arctic and boreal ecosystems to climate, Global Change Biol., 6, S211S223.
  • Chapman, W. L., and J. E. Walsh (1993), Recent variations of sea ice and air-temperature in high-latitudes, Bull. Am. Meteorol. Soc., 74, 3347.
  • Codispoti, L. A., G. E. Friederich, C. M. Sakamoto, and L. I. Gordon (1991), Nutrient cycling and primary production in the marine systems of the Arctic and Antarctic, J. Mar. Syst., 2, 359384.
  • Cohn, T. A., E. J. Gilroy, and W. G. Baier (1992), Estimating fluvial transport of trace constituents using a regression model with data subject to censoring, American Statistical Association Section on Statistics and the Environment, Am. Stat. Assoc., pp. 142151, Boston.
  • Cooper, L. W., T. E. Whitledge, J. M. Grebmeier, and T. Weingartner (1997), The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait, J. Geophys. Res., 102, 12,56312,573.
  • Cooper, L. W., R. Benner, J. W. McClelland, B. J. Peterson, R. M. Holmes, P. A. Raymond, D. A. Hansell, J. M. Grebmeier, and L. A. Codispoti (2005), Linkages among runoff, dissolved organic carbon, and the stable isotope composition of seawater and other water mass indicators in the Arctic Ocean, J. Geophys. Res., 110, G02013, doi:10.1029/2005JG000031.
  • Cullather, R. I., D. H. Bromwich, and M. C. Serreze (2000), The atmospheric hydrologic cycle over the Arctic Basin from reanalyses, part I: Comparison with observations and previous studies, J. Clim., 13, 923937.
  • Déry, S. J., W. T. Crow, M. Stieglitz, and E. F. Wood (2004), Modeling snow cover heterogeneity over complex terrain for regional and global climate models, J. Hydrometeorol., 5, 3348.
  • Déry, S. J., M. Stieglitz, A. K. Rennermalm, and E. F. Wood (2005), The water budget of the Kuparuk basin, Alaska, J. Hydrometeorol., 6, 633655.
  • Dittmar, T., and G. Kattner (2003), The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review, Mar. Chem., 83, 103120.
  • Ducharne, A., R. D. Koster, M. J. Suarez, M. Stieglitz, and P. Kumar (2000), A catchment-based approach to modeling land surface processes in a GCM. Part II: Parameter estimation and model demonstration, J. Geophys. Res., 105, 24,82324,838.
  • Dunton, K. H., T. Weingartner, and E. C. Carmack (2006), The near shore western Beaufort Sea ecosystem: Circulation and importance of terrestrial carbon in arctic coastal food webs, Progress Oceanogr., 71, 362378.
  • Findlay, S. E. G. (2005), Increased carbon transport in the Hudson River: Unexpected consequence of nitrogen deposition? Frontiers Ecol. Environ., 3, 133137.
  • Frazer, B. B., J. W. McClelland, R. M. Holmes, and P. Raymond (2006), The lability of dissolved organic carbon in arctic rivers on the North Slope of Alaska, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract C51A-0403.
  • Freeman, C., C. D. Evans, D. T. Monteith, B. Renolds, and N. Fenner (2001), Export of organic carbon from peat soils, Nature, 412, 785.
  • Frey, K. E., and L. C. Smith (2005), Amplified carbon release from vast West Siberian peatlands by 2100, Geophys. Res. Lett., 32, L09401, doi:10.1029/2004GL022025.
  • Frey, K. E., J. W. McClelland, R. M. Holmes, and L. C. Smith (2007), Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea, J. Geophys. Res., 112, G04S58, doi:10.1029/2006JG000369.
  • Hansell, D. A., D. Kadko, and N. R. Bates (2004), Degradation of terrigenous dissolved organic carbon in the western Arctic Ocean, Science, 304, 858861.
  • Harvey, C. J., B. J. Peterson, W. B. Bowden, L. A. Deegan, J. C. Finlay, A. E. Hershey, and M. C. Miller (1997), Organic matter dynamics in the Kuparuk River in Alaska, USA, J. N. Am. Benthological Soc., 16, 1823.
  • Helsel, D. R., and R. M. Hirsch (Eds.) (2002), Statistical methods in water resources, in Techniques of Water Resources Research, book 4, chap. A3, 510 pp., U.S. Geol. Surv., Washington, D. C.,
  • Hinzman, L. D., D. L. Kane, R. E. Gieck, and K. R. Everett (1991), Hydrologic and thermal properties of the active layer in the Alaskan Arctic, Cold Regions Sci. Technol., 19, 95110.
  • Holmes, R. M., B. J. Peterson, V. V. Gordeev, A. V. Zhulidov, M. Meybeck, R. B. Lammers, and C. J. Vörösmarty (2000), Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes? Water Resour. Res., 36, 23092320.
  • Holmes, R. M., B. J. Peterson, A. V. Zhulidov, V. V. Gordeev, P. N. Makkaveev, P. A. Stunzas, L. S. Kosmenko, G. H. Kohler, and A. I. Shiklomanov (2001), Nutrient chemistry of the Ob' and Yenisey rivers, Siberia: Results from June 2000 expedition and evaluation of long-term data sets, Mar. Chem., 75, 219227.
  • Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., 881 pp., Cambridge Univ. Press, New York.
  • Johnson, L. C., G. R. Shaver, D. H. Cades, E. Rastetter, K. Nadelhoffer, A. Giblin, J. Laundre, and A. Stanley (2000), Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems, Ecology, 81, 453469.
  • Jones, J. B.Jr., K. C. Petrone, J. C. Finlay, L. D. Hinzman, and W. R. Bolton (2005), Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost, Geophys. Res. Lett., 32, L02401, doi:10.1029/2004GL021734.
  • Kane, D. L., L. D. Hinzman, J. P. McNamara, Z. Zhang, and C. S. Benson (2000), An overview of a nested watershed study in Arctic Alaska, Nordic Hydrol., 31, 245266.
  • Koster, R. D. and M. J. Suarez (1996), Energy and water balance calculations in the Mosaic LSM, NASA Tech. Memo. 04606, 9, 59 pp., Natl. Aeronaut. Space Admin., Silver Spring, Md.,
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar (2000), A catchment-based approach to modeling land surface processes in a GCM. Part I: Model structure, J. Geophys. Res., 105, 24,80924,822.
  • Kriet, K., B. J. Peterson, and T. L. Corliss (1992), Water and sediment export of the upper Kuparuk River drainage of the North Slope of Alaska, Hydrobiologia, 240, 7181.
  • Lobbes, J. M., H. P. Fitznar, and G. Kattner (2000), Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean, Geochim. Cosmochim. Acta, 64, 29732983.
  • Luchetta, A., M. Lipizer, and G. Socal (2000), Temporal evolution of primary production in the central Barents Sea, J. Mar. Syst., 27, 177193.
  • MacLean, R., M. W. Oswood, J. G. Irons III, and W. H. McDowell (1999), The effect of permafrost on stream biogeochemistry: A case study of two streams in the Alaskan (U.S.A) taiga, Biogeochemistry, 47, 239267.
  • McClelland, J. W., R. M. Holmes, B. J. Peterson, and M. Stieglitz (2004), Drivers of increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change, J. Geophys. Res., 109, D18102, doi:10.1029/2004JD004583.
  • McGuire, A. D., J. M. Melillo, D. W. Kicklighter, Y. Pan, X. Xiao, J. Helfrich, B. Moore III, C. J. Vorosmarty, and A. L. Schloss (1997), Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration, Global Biogeochem. Cycles, 11, 173189.
  • McGuire, A. D., J. Clein, J. M. Melillo, D. W. Kicklighter, R. A. Meier, C. J. Vorosmarty, and M. C. Serreze (2000), Modeling carbon responses of tundra ecosystems to historical and projected climate: The sensitivity of Pan-Arctic carbon storage to temporal and spatial variation in climate, Global Change Biol., 6, S141S159.
  • McNamara, J. P., D. L. Kane, and L. D. Hinzman (1998), An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska: A nested watershed approach, J. Hydrol., 206, 3957.
  • Nolan, M. (2003), Distribution of a Star3i DEM of the Kuparuk River watershed, [CR-ROM], (NSF OPP-0207220), Joint Office of Scientific Support, Boulder, Colo.,
  • Oke, T. R. (1987), Boundary Layer Climates, 2nd edition, 435 pp., Methuen, New York.
  • Opsahl, S., R. Benner, and R. W. Amon (1999), Major flux of terrigenous dissolved organic matter through the Artic Ocean, Limnol. Oceanogr., 44, 20172023.
  • Osterkamp, T. E., and M. W. Payne (1981), Estimates of permafrost thickness from well logs in northern Alaska, Cold Regions Sci. Technol., 5, 1327.
  • Osterkamp, T. E., and V. E. Romanovsky (1999), Evidence for warming and thawing of discontinuous permafrost in Alaska, Permafrost Periglacial Processes, 10, 1737.
  • Overpeck, J., et al. (1997), Arctic environmental change of the last four centuries, Science, 278, 12511256.
  • Peterson, B. J., J. E. Hobbie, and T. L. Corliss (1986), Carbon flow in a tundra stream ecosystem, Can. J. Fish. Aquat. Sci., 43, 12591270.
  • Peterson, B. J., T. Corliss, K. Kriet, and J. E. Hobbie (1992), Nitrogen and phosphorus concentrations and export for the upper Kuparuk River on the North Slope of Alaska, Hydrobiologia, 240, 6169.
  • Peterson, B. J., et al. (1993), Biological responses of a tundra river to fertilization, Ecology, 74, 653672.
  • Peterson, B. J., M. Bahr, and G. W. Kling (1997), A tracer investigation of nitrogen cycling in a pristine tundra river, Can. J. Fish. Aquat. Sci., 54, 23612367.
  • Peterson, B. J., et al. (2001), Control of nitrogen export from watersheds by headwater streams, Science, 292, 8690.
  • Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vörösmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf (2002), Increasing river discharge to the Arctic Ocean, Science, 289, 21712173.
  • Petrone, K. C., J. B. Jones, L. D. Hinzman, and R. D. Boone (2006), Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost, J. Geophys. Res., 111, G02020, doi:10.1029/2005JG000055.
  • Rachold, V., H. Eiken, V. V. Gordeev, M. N. Grigoriev, H. W. Hubberten, A. P. Lisitzin, V. P. Shevchenko, and L. Schirrmeister (2003), Modern terrigenous organic carbon input to the Arctic Ocean, in The Organic Carbon Cycle in the Arctic Ocean, edited by R. Stein, and R. W. Macdonald, pp. 3355, Springer, New York.
  • Rastetter, E. B., and G. R. Shaver (1992), A model of multiple-element limitation for acclimating vegetation, Ecology, 73, 11571174.
  • Rember, R. D., and J. H. Trefry (2004), Increased concentrations of dissolved trace metals and organic carbon during snowmelt in rivers of the Alaskan Arctic, Geochim. Cosmochim. Acta, 68, 477489.
  • Runkel, R. L., C. G. Crawford, and T. A. Cohn (2004), Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers, U.S. Geol. Surv. Tech. Meth., book 4, chap. A5, 69 pp., U. S. Geol. Surv., Denver, Colo.,
  • Serreze, M. C., and C. M. Hurst (2000), Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses, J. Clim., 13, 182201.
  • Shaman, J., M. Stieglitz, V. Engel, R. Koster, and C. Stark (2002), Representation of subsurface storm flow and a more responsive water table in a TOPMODEL-based hydrology model, Water Resour. Res., 38(8), 1156, doi:10.1029/2001WR000636.
  • Shaver, G. R., W. D. Billings, F. S. Chapin III, A. E. Giblin, K. J. Nadelhoffer, W. C. Oechel, and E. B. Rastetter (1992), Global change and the carbon balance of arctic ecosystems, BioScience, 42, 433441.
  • Shaver, G. R., L. C. Johnson, D. H. Cades, G. Murray, J. A. Laundre, E. B. Rastetter, K. J. Nadelhofer, and A. E. Giblin (1998), Biomass and CO2 flux in wet sedge tundras: Response to nutrients, temperature, and light, Ecol. Monogr., 68, 7597.
  • Shiklomanov, N. I., and F. E. Nelson (2002), Active-layer mapping at regional scales: A 13-year spatial time series for the Kuparuk Region, North Central Alaska, Permafrost Periglacial Processes, 13, 219230.
  • Sivapalan, M., K. Beven, and E. F. Wood (1987), On hydrologic similarity. 2: A scaled model of storm runoff production, Water Resour. Res., 23, 22662278.
  • Stein, R., and R. W. Macdonald (Eds.) (2003), The Organic Carbon Cycle in the Arctic Ocean, 363 pp., Springer, New York.
  • Stieglitz, M., A. Ducharne, R. D. Koster, and M. J. Suarez (2001), The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales, J. Hydrometeorol., 2, 228242.
  • Stieglitz, M., S. J. Déry, V. E. Romanovsky, and T. E. Osterkamp (2003), The role of snow cover in the warming of arctic permafrost, Geophys. Res. Lett., 30(13), 1721, doi:10.1029/2003GL017337.
  • Striegl, R. G., G. R. Aiken, M. M. Dornblaser, P. A. Raymond, and K. P. Wickland (2005), A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn, Geophys. Res. Lett., 32, L21413, doi:10.1029/2005GL024413.
  • Tranvik, L. J., and M. Jansson (2002), Terrestrial export of organic carbon, Nature, 415, 861862.
  • Uppala, S. M., et al. (2005), The ERA-40 re-analysis, Q. J. R. Meteorol. Soc., 131, 29613012, doi:10.1256/qj.04.176.
  • Walker, D. A., and M. D. Walker (1996), Terrain and vegetation of the Imnavait Creek watershed, in Landscape Function and Disturbance in Arctic Tundra, edited by J. F. Reynolds, and J. D. Tenhunen, Ecol. Stud., vol. 120, pp. 73108, Springer, New York.
  • Wheeler, P. A., J. M. Watkins, and R. L. Hansing (1997), Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: Implications for the sources of dissolved organic carbon, Deep Sea Res. II, 44, 15711592.
  • Williams, M., W. Eugster, E. B. Rastetter, J. P. McFadden, and F. S. Chapin (2000), The controls on net ecosystem productivity along an Arctic transect: A model comparison with flux measurements, Global Change Biol., 6, 116126.
  • Wollheim, W. M., B. J. Peterson, L. A. Deegan, J. E. Hobbie, B. Hooker, W. B. Bowden, K. J. Edwardson, D. B. Arscott, A. E. Hershey, and J. Finlay (2001), Influence of stream size on ammonium and suspended particulate nitrogen processing, Limnol. Oceanogr., 46, 113.
  • Worrall, F., and T. Burt (2004), Time series analysis of long-term river dissolved organic carbon records, Hydrol. Processes, 18, 893912.
  • Wu, P., R. Wood, and P. Stott (2005), Human influence on increasing Arctic river discharges, Geophys. Res. Lett., 32, L02703, doi:10.1029/2004GL021570.
  • Zhang, T., T. E. Osterkamp, and K. Stamnes (1996), Some characteristics of the climate in Northern Alaska, U.S.A. Arct. Alp. Res., 28, 509518.
  • Zhulidov, A. V., V. V. Khlobystov, R. D. Robarts, and D. F. Pavlov (2000), Critical analysis of water quality monitoring in the Russian Federation and former Soviet Union, Can. J. Fish. Aquat. Sci., 57, 19321939.