SEARCH

SEARCH BY CITATION

References

  • Amiro, B. D., J. M. Chen, and J. Liu (2000), Net primary productivity following forest fire for Canadian ecoregions, Can. J. For. Res., 30, 939947.
  • Amiro, B. D., J. B. Todd, B. M. Wotton, K. A. Logan, M. D. Flannigan, B. J. Stocks, J. A. Mason, D. L. Martell, and K. G. Hirsch (2001), Direct carbon emissions from Canadian fires, Can. J. For. Res., 31, 512525.
  • Bureau of Land Management (2005), Alaska fire history, 1950–2004, vector digital data, Alaska Fire Serv., Anchorage. (Available at http://agdc.usgs.gov/data/blm/fire/index.html).
  • Caspersen, J. P., S. W. Pacala, J. C. Jenkins, G. C. Hurtt, and P. R. Moorcroft (2000), Contributions of land-use history to carbon accumulation in U. S. forests, Science, 290(5494), 11481151.
  • Chapin, F. S.III, et al. (2006), Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems, 9, 10411050.
  • Chapman, W. L., and J. E. Walsh (1993), Recent variations of sea ice and air temperatures in high latitudes, Bull. Am. Meteorol. Soc., 74, 3347.
  • Chen, J., W. Chen, J. Liu, J. Cihlar, and S. Gray (2000), Annual carbon balance of Canada's forests during 1895–1996, Global Biogeochem. Cycles, 14(3), 839849.
  • Chen, J. M., W. Ju, J. Cihlar, D. Price, J. Liu, W. Chen, J. Pan, A. Black, and A. Barr (2003), Spatial distribution of carbon sources and sinks in Canada's forests, Tellus, Ser. B, 55, 622641.
  • Chen, J. M., B. Chen, K. Higuchi, J. Liu, D. Chan, D. Worthy, P. Tans, and A. Black (2006), Boreal ecosystems sequestered more carbon in warmer years, Geophys. Res. Lett., 33, L10803, doi:10.1029/2006GL025919.
  • Chen, W., J. M. Chen, D. T. Price, and J. Cihlar (2002), Effects of stand age on net primary productivity of boreal black spruce forests in Ontario, Canada, Can. J. For. Res., 32, 833842.
  • Clein, J. S., B. Kwiatkowski, A. D. McGuire, J. E. Hobbie, E. B. Rastetter, J. M. Melillo, and D. W. Kicklighter (2000), Modeling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties, Global Change Biol., 6, S127S140.
  • Clein, J. S., A. D. McGuire, X. Zhang, D. W. Kicklighter, J. M. Melillo, S. C. Wofsy, P. G. Jarvis, and J. M. Massheder (2002), Historical and projected carbon balances of mature black spruce ecosystems across North America: The role of carbon-nitrogen interactions, Plant Soil, 242, 1532.
  • Conard, S. G., and G. A. Ivanova (1997), Wildfire in Russian boreal forests—Potential impacts of fire regime characteristics on emissions and global carbon balance estimates, Environ. Pollut., 98(3), 305313.
  • Conard, S. G., A. I. Sukhinin, B. J. Stocks, D. R. Cahoon, E. P. Davidenko, and G. A. Ivanova (2002), Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia, Clim. Change, 55, 197211.
  • Dargaville, R., A. D. McGuire, and P. Rayner (2002), Estimates of large-scale fluxes in high latitudes from terrestrial biosphere models and an inversion of atmospheric CO2 measurements, Clim. Change, 55, 273285.
  • Dargaville, R., D. Baker, C. Rödenbeck, P. Rayner, and P. Ciais (2006), Estimating high latitude carbon fluxes with inversions of atmospheric CO2, Mitigation and Adaptation Strategies for Global Change, 11, doi:10.1007/s11027-005-9018-1.
  • DeLucia, E. H., D. J. Moore, and R. J. Norby (2005), Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle, Global Biogeochem. Cycles, 19, GB3006, doi:10.1029/2004GB002346.
  • Euskirchen, E. S., et al. (2006), Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems, Global Change Biol., 12, doi:10.1111/j.1365-2486.2006.01113.x.
  • FIRESCAN Science Team (1996), Fire in ecosystems of boreal Eurasia: The Bor Forest Island Fire Experiment, Fire Research Campaign Asia-North (FIRESCAN), in Biomass Burning and Global Change, vol. 2, edited by J. S. Levine, pp. 848873, MIT Press, Cambridge, Mass.,
  • Flannigan, M. D., and J. Little (2002), Canadian Large Fire Database, 1959–1999 point data set, Canadian Forest Service, Edmonton, Alberta, Canada. (Available at http://www.nofc.forestry.ca/fire/research/climate_change/lfdb/lfdb_download_e.htm).
  • Flannigan, M. D., Y. Bergeron, O. Engelmark, and B. M. Wotton (1988), Future wildfire in circumboreal forests in relation to global warming, J. Veg. Sci., 9, 469476.
  • Flannigan, M. D., K. A. Logan, B. D. Amiro, W. R. Skinner, and B. J. Stocks (2005), Future area burned in Canada, Clim. Change, 72, 116.
  • Forestry Canada (1992), Development and structure of the Canadian forest fire behavior prediction system, Can. For. Serv. Inf. Rep., ST-X-3.
  • French, N. H. F., E. S. Kasischke, B. J. Stocks, J. P. Mudd, D. L. Martell, and B. S. Lee (2000), Carbon release from fires in the North American boreal forest, in Fire, Climate Change, and Carbon Cycling in the Boreal Forest, Ecol. Stud., vol. 138, edited by E. S. Kasischke, and B. J. Stocks, pp. 377388, Springer, New York.
  • French, N. H. F., E. S. Kasischke, and D. G. Williams (2002), Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest, J. Geophys. Res., 107, 8151, doi:10.1029/2001JD000480 [printed 108(D1), 2003].
  • Furyaev, V. V. (1996), Role of Fires in Forest Forming Process [in Russian], Nauka, Novosibirsk, Russia.
  • Gillett, N. P., A. J. Weaver, F. W. Zwiers, and M. D. Flannigan (2004), Detecting the effect of climate change on Canadian forest fires, Geophys. Res. Lett., 31, L18211, doi:10.1029/2004GL020876.
  • Global Soil Data Task Group (2000), Global gridded surfaces of selected soil characteristics (International Geosphere-Biosphere Programme-Data and Information System), Oak Ridge Natl. Lab. Distrib. Active Arch. Cent., Oak Ridge, Tenn.,
  • Goetz, S. J., A. G. Bunn, G. J. Fiske, and R. A. Houghton (2005), Satellite observed photosynthetic trends across boreal North America associated with climate and fire disturbance, Proc. Natl. Acad. Sci., 103(38), 13,52113,525.
  • Government of Alberta (2005), Historical wildfires: 1931–1979, Wildfire Resour. Inf. Sect., For. Prot. Div., Sustainable Resour. Dev., Edmonton, Alberta, Canada.
  • Gurney, K. R., et al. (2004), Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks, Global Biogeochem. Cycles, 18, GB1010, doi:10.1029/2003GB002111.
  • Harden, J. W., J. C. Neff, D. V. Sandberg, M. R. Turetsky, R. Ottmar, G. Gleixner, T. L. Fries, and K. L. Manies (2004), Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999, Global Biogeochem. Cycles, 18, GB3014, doi:10.1029/2003GB002194.
  • Hicke, J. A., G. P. Asner, E. S. Kasischke, N. H. F. French, J. T. Randerson, G. J. Collatz, B. J. Stocks, C. J. Tucker, S. O. Los, and C. B. Field (2003), Postfire response of North American boreal forest net primary productivity analyzed with satellite observations, Global Change Biol., 9, 11451157.
  • Hungate, B. A., J. S. Dukes, M. R. Shaw, Y. Luo, and C. B. Field (2003), Nitrogen and climate change, Science, 302(5650), 15121513.
  • Johnson, E. A. (1992), Fire and Vegetation Dynamics: Studies From the North American Boreal Forest, 129 pp., Cambridge Univ. Press, New York.
  • Kajii, Y., et al. (2002), Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data, J. Geophys. Res., 107(D24), 4745, doi:10.1029/2001JD001078.
  • Kasischke, E. S., and L. P. Bruhwiler (2002), Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998, J. Geophys. Res., 107, 8146, doi:10.1029/2001JD000461 [printed 108(D1), 2003].
  • Kasischke, E. S., and M. R. Turetsky (2006), Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703, doi:10.1029/2006GL025677.
  • Kasischke, E. S., N. L. Christensen Jr., and B. J. Stocks (1995), Fire, global warming, and the carbon balance of boreal forests, Ecol. Appl., 5(2), 437451.
  • Kasischke, E. S., K. P. O'Neill, N. H. F. French, and L. L. Bourgeau-Chavez (2000), Controls on patterns of biomass burning in Alaskan boreal forests, in Fire, Climate Change, and Carbon Cycling in the Boreal Forest, Ecol. Stud., vol. 138, edited by E. S. Kasischke, and B. J. Stocks, pp. 173196, Springer, New York.
  • Kasischke, E. S., D. Williams, and D. Barry (2002), Analysis of the patterns of large fires in the boreal forest region of Alaska, Int. J. Wildland Fire, 11, 131144.
  • Kasischke, E. S., E. J. Hyer, P. C. Novelli, L. P. Bruhwiler, N. H. F. French, A. I. Sukhinin, J. H. Hewson, and B. J. Stocks (2005), Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide, Global Biogeochem. Cycles, 19, GB1012, doi:10.1029/2004GB002300.
  • Keeling, C. D., and T. P. Whorf (2005), Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, Tenn.,
  • Kicklighter, D. W., et al. (1999), A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models, Tellus, Ser. B, 51, 343366.
  • Kimball, J. S., K. C. McDonald, and M. Zhao (2006), Spring thaw and its effect on terrestrial vegetation productivity in the western Arctic observed from satellite microwave and optical remote sensing, Earth Interactions, 10, 122. (Available at http://earthinteractions.org).
  • Kimball, J. S., et al. (2007), Recent climate driven increases in vegetation productivity for the western Arctic: Evidence of an acceleration of the northern terrestrial carbon cycle, Earth Interactions, 11, 130. (Available at http://earthinteractions.org).
  • Kurz, W. A., and M. J. Apps (1999), A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector, Ecol. Appl., 9(2), 526547.
  • Luo, Y., et al. (2004), Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide, BioScience, 54(8), 731739.
  • McCoy, V. M., and C. R. Burn (2005), Potential alteration by climate change of the forest-fire regime in the boreal forest of Central Yukon Territory, Arctic, 58(3), 276285.
  • McGuire, A. D., J. M. Melillo, L. A. Joyce, D. W. Kicklighter, A. L. Grace, B. Moore III, and C. J. Vorosmarty (1992), Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America, Global Biogeochem. Cycles, 6, 101124.
  • McGuire, A. D., L. A. Joyce, D. W. Kicklighter, J. M. Melillo, G. Esser, and C. J. Vorosmarty (1993), Productivity response of climax temperate forests to elevated temperature and carbon dioxide: A North American comparison between two global models, Clim. Change, 24, 287310.
  • McGuire, A. D., J. M. Melillo, D. W. Kicklighter, Y. Pan, X. Xiao, J. Helfrich, B. Moore III, C. J. Vorosmarty, and A. L. Schloss (1997), Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration, Global Biogeochem. Cycles, 11, 173189.
  • McGuire, A. D., J. Clein, J. M. Melillo, D. W. Kicklighter, R. A. Meier, C. J. Vorosmarty, and M. C. Serreze (2000a), Modeling carbon responses of tundra ecosystems to historical and projected climate: The sensitivity of pan-arctic carbon storage to temporal and spatial variation in climate, Global Change Biol., 6, S141S159.
  • McGuire, A. D., J. M. Melillo, J. T. Randerson, W. J. Parton, M. Heimann, R. A. Meier, J. S. Clein, D. W. Kicklighter, and W. Sauf (2000b), Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon dioxide in high latitudes, Biogeochemistry, 48, 91114.
  • McGuire, A. D., et al. (2001), Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 15(1), 183206.
  • McGuire, A. D., et al. (2002), Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes, J. Veg. Sci., 13, 301314.
  • McGuire, A. D., et al. (2004), Land cover disturbances and feedbacks to the climate system in Canada and Alaska, in Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth's Surface, edited by G. Gutman et al., pp. 139161, Kluwer Acad., Dordrecht, Netherlands.
  • McGuire, A. D., F. S. Chapin III, J. E. Walsh, and C. Wirth (2006), Integrated regional changes in arctic climate feedbacks: Implications for the global climate system, Ann. Rev. Environ. Resour., 31, 6191.
  • Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore III, C. J. Vorosmarty, and A. L. Schloss (1993), Global climate change and terrestrial net primary production, Nature, 63, 234240.
  • Mitchell, T. D., and P. D. Jones (2005), An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25(6), 693712.
  • Mouillot, F., A. Narasimha, Y. Balkanski, J.-F. Lamarque, and C. B. Field (2006), Global carbon emissions from biomass burning in the 20th century, Geophys. Res. Lett., 33, L01801, doi:10.1029/2005GL024707.
  • Myneni, R. B., J. Dong, C. J. Tucker, R. K. Kaufmann, P. E. Kauppi, J. Liski, L. Zhou, V. Alexeyev, and M. K. Hughes (2001), A large carbon sink in the woody biomass of northern forests, Proc. Natl. Acad. Sci., 98, 14,78414,789.
  • Naelapea, O., and J. Nickeson (1998), SERM forest fire chronology of Saskatchewan in vector format, Oak Ridge Natl. Lab. Distrib. Active Arch. Cent., Oak Ridge, Tenn.,
  • National Geophysical Data Center (NGDC) (1994), TerrainBase v. 1.1, 5-minute digital terrain model data, Boulder, Colo.,
  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running (2003), Climate-driven increases in global terrestrial net primary production from 1982–1999, Science, 300, 15601563.
  • Norby, R. J., et al. (2005), Forest response to elevated CO2 is conserved across a broad range of productivity, Proc. Natl. Acad. Sci., 102(50), 18,05218,056.
  • Peng, C., and M. J. Apps (1999), Modelling the response of net primary productivity (NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes, Ecol. Modell., 122, 175193.
  • Potter, C., P.-N. Tan, M. Steinbach, S. Klooster, V. Kumar, R. Myneni, and V. Genovese (2003a), Major disturbance events in terrestrial ecosystems detected using global satellite data sets, Global Change Biol., 9, 10051021.
  • Potter, C., S. Klooster, P. Tan, M. Steinbach, V. Kumar, and V. Genovese (2003b), Variability in terrestrial carbon sinks over two decades. Part 1: North America, Earth Interactions, 7, 114.
  • Potter, C., S. Klooster, P. Tan, M. Steinbach, V. Kumar, and V. Genovese (2005), Variability in terrestrial carbon sinks over two decades: Part 2–Eurasia, Global Planet. Change, 49, 177186.
  • Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler, B. J. Peterson, A. L. Grace, B. Moore III, and C. J. Vörösmarty (1991), Potential net primary productivity in South America: Application of a global model, Ecol. Appl., 1(4), 399429.
  • Schimel, D. S., et al. (2001), Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems, Nature, 414, 169172.
  • Serreze, M. C., and J. A. Francis (2006), The Arctic amplification debate, Clim. Change, 76, 241264.
  • Serreze, M. C., J. E. Walsh, F. S. Chapin III, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W. C. Oechel, J. Morison, T. Zhang, and R. G. Barry (2000), Observational evidence of recent change in the northern high-latitude environment, Clim. Change, 46, 159207.
  • Shvidenko, A. Z., and S. Nilsson (2000), Fire and the carbon budget of Russian forests, in Fire, Climate Change, and Carbon Cycling in the Boreal Forest, Ecol. Stud., vol. 138, edited by E. S. Kasischke, and B. J. Stocks, pp. 289311, Springer, New York.
  • Shvidenko, A., and S. Nilsson (2002), Dynamics of Russian forests and the carbon budget in 1961–1998: An assessment based on long-term forest inventory data, Clim. Change, 55, 537.
  • Shvidenko, A., and S. Nilsson (2003), A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998, Tellus, Ser. B, 55, 391415.
  • Soja, A. J., W. R. Cofer, H. H. Shugart, A. I. Sukhinin, P. W. Stackhouse Jr, D. J. McRae, and S. G. Conard (2004), Estimating fire emissions and disparities in boreal Siberia (1998–2002), J. Geophys. Res., 109, D14S06, doi:10.1029/2004JD004570.
  • Stocks, B. J., et al. (1998), Climate change and forest fire potential in Russian and Canadian boreal forests, Clim. Change, 38, 113.
  • Sukhinin, A. I., et al. (2004), AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies, Remote Sens. Environ., 93(4), 546564.
  • Thompson, C. D., A. D. McGuire, J. S. Clein, F. S. Chapin III, and J. Beringer (2006), Net carbon exchange across the arctic tundra-boreal forest transition in Alaska 1981–2000, Mitigation and Adaptation Strategies for Global Change, 11, 805827.
  • Thonicke, K., S. Venevsky, S. Sitch, and W. Cramer (2001), The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model, Global Ecol. Biogeogr., 10, 661677.
  • Tian, H., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, and J. Helfrich (1999), The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States, Tellus, Ser. B, 51, 414452.
  • Turetsky, M., K. Wieder, L. Halsey, and D. Vitt (2002), Current disturbance and the diminishing peatland carbon sink, Geophys. Res. Lett., 29(11), 1526, doi:10.1029/2001GL014000.
  • Turetsky, M. R., J. Harden, H. R. Friedli, M. Flannigan, N. Payne, J. Crock, and L. Radke (2006), Wildfires threaten mercury stocks in northern soils, Geophys. Res. Lett., 33, L16403, doi:10.1029/2005GL025595.
  • Turner, M. G., and W. H. Romme (1994), Landscape dynamics in crown fire ecosystems, Landscape Ecol., 9(1), 5977.
  • van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr. (2006), Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 34233441.
  • Venevsky, S., K. Thonicke, S. Sitch, and W. Cramer (2002), Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study, Global Change Biol., 8, 984998.
  • Wang, S., D. Hui, and Y. Luo (2001), Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis, Ecol. Appl., 11(5), 13491365.
  • Weber, M. G., and M. D. Flannigan (1997), Canadian boreal forest ecosystem structure and function in a changing climate: Impact on fire regimes, Environ. Rev., 5, 145166.
  • Wirth, C. (2005), Fire regime and tree diversity in boreal forests: Implications for the carbon cycle, in Forest Diversity and Function: Temperate and Boreal Systems, Ecol. Stud., vol. 176, edited by M. Scherer-Lorenzen, C. Körner, and E.-D. Schulze, pp. 309344, Springer, Berlin.
  • Wirth, C., E.-D. Schulze, B. Lühker, S. Grigoriev, M. Siry, G. Hardes, W. Ziegler, M. Backor, G. Bauer, and N. N. Vygodskaya (2002a), Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests, Plant Soil, 242, 4163.
  • Wirth, C., C. I. Czimczik, and E. D. Schulze (2002b), Beyond annual budgets: Carbon flux at different temporal scales in fire-prone Siberian Scots pine forests, Tellus, Ser. B, 54, 611630.
  • Wotton, B. M., and M. D. Flannigan (1993), Length of the fire season in a changing climate, For. Chron., 69, 187192.
  • Wotton, B. M., D. L. Martell, and K. A. Logan (2003), Climate change and people-caused forest fire occurrence in Ontario, Clim. Change, 60, 275295.
  • Xiao, X., D. W. Kicklighter, J. M. Melillo, A. D. McGuire, P. H. Stone, and A. P. Sokolov (1997), Linking a global terrestrial biogeochemical model and a 2-dimensional climate model: Implications for the carbon budget, Tellus, Ser. B, 49, 1837.
  • Yurganov, L. N., et al. (2004), A quantitative assessment of the 1998 carbon monoxide emission anomaly in the Northern Hemisphere based on total column and surface concentration measurements, J. Geophys. Res., 109, D15305, doi:10.1029/2004JD004559.
  • Zhuang, Q., V. E. Romanovsky, and A. D. McGuire (2001), Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics, J. Geophys. Res., 106, 33,64933,670.
  • Zhuang, Q., A. D. McGuire, J. Harden, K. P. O'Neill, V. E. Romanovsky, and J. Yarie (2002), Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska, J. Geophys. Res., 107, 8147, doi:10.1029/2001JD001244 [printed 108(D1), 2003].
  • Zhuang, Q., et al. (2003), Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics, Tellus, Ser. B, 55, 751776.
  • Zhuang, Q., J. M. Melillo, B. S. Felzer, D. W. Kicklighter, A. D. McGuire, M. C. Sarofim, A. Sokolov, R. G. Prinn, P. A. Steudler, and S. Hu (2006), CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century, Geophys. Res. Lett., 33, L17403, doi:10.1029/2006GL026972.