SEARCH

SEARCH BY CITATION

References

  • Adatte, T., W. Stinnesbeck, and G. Keller (1996a), Lithostratigraphic and mineralogic correlations of near K/T boundary sediments in northeastern Mexico: Implications for origin and nature of deposition, in The Cretaceous-Tertiary Event and Other Catastrophes in Earth History, edited by G. Ryder, D. Fastovsky, and S. Gartner, Geol. Soc. Am. Spec. Pap., 307, 211226.
  • Adatte, T., W. Stinnesbeck, J. Remane, and H. Hubberten (1996b), Paleoceanographic changes at the Jurassic-Cretaceous boundary in the western Tethys, northeastern Mexico, Cretaceous Res., 17, 671689.
  • Arnaud-Vanneau, A., and H. Arnaud (1990), Hauterivian to Lower Aptian carbonate shelf sedimentation and sequence stratigraphy in the Jura and northern subalpine chains, in Carbonate Platforms, edited by M. E. Tucker, Spec. Publ. Int. Assoc. Sedimentol., 9, 203233.
  • Arthur, M. A., and S. O. Schlanger (1979), Cretaceous “Oceanic Anoxic Events” as causal factors in development of reef-reservoired giant oil fields, AAPG Bull., 63, 870885.
  • Arthur, M. A., W. E. Dean, and L. M. Pratt (1988), Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary, Nature, 335, 714717.
  • Bartley, J. K., and L. C. Kah (2004), Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle, Geology, 32, 129132.
  • Bartolini, A. (2003), Cretaceous radiolarian biochronology and carbon isotope stratigraphy of ODP Site 1149 (northwestern Pacific, Nadezhda Basin), Proc. Ocean Drill. Program Sci. Results, 185, 117.
  • Bernaus, J. M., A. Arnaud-Vanneau, and E. Caus (2003), Carbonate platform sequence stratigraphy in a rapidly subsiding area: The late Barremian–early Aptian of the Organyà basin, Spanish Pyrenees, Sediment. Geol., 159, 177201.
  • Bodin, S., A. Godet, K. B. Föllmi, J. Vermeulen, H. Arnaud, A. Strasser, N. Fiet, and T. Adatte (2006a), The late Hauterivian Faraoni oceanic anoxic event in the western Tethys: Evidence from phosphorus burial rates, Palaeogeogr. Palaeoclimatol. Palaeoecol., 235, 245264.
  • Bodin, S., A. Godet, J. Vermeulen, and K. B. Föllmi (2006b), New data on the age of the installation of Urgonian-type carbonates along the northern Tethyan margin: Biostratigraphy of the Chopf Member (Helvetic Alps, eastern Switzerland), C. R. Geosci., 338, 727733.
  • Bodin, S., A. Godet, J. Vermeulen, P. Linder, and K. B. Föllmi (2006c), Biostratigraphy, sedimentology and sequence stratigraphy of the latest Hauterivian–early Barremian drowning episode of the northern Tethyan margin (Altmann Member, Helvetic nappes, Switzerland), Eclogae Geol. Helv., in press.
  • Bollinger, D. (1988), Die Entwicklung des distalen osthelvetischen Schelfs im Barremian und Früh-Aptian, Ph.D. thesis, Eidg. Tech. Hochsch. Zürich, Zürich, Switzerland.
  • Bréhéret, J. G. (1997), L'Aptien et l'Albien de la fosse vocontienne (des bordures au bassin): Evolution de la sédimentation et enseignements sur les événements anoxiques, Soc. Géol. Nord, 25, 1164.
  • Carannante, G., M. Esteban, J. D. Milliman, and L. Simone (1988), Carbonate lithofacies as paleolatitude indicators: Problems and limitations, Sediment. Geol., 60, 333346.
  • Cerlings, T. E., Y. Wang, and J. Quade (1993), Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene, Nature, 361, 344345.
  • Colombié, C., and A. Strasser (2003), Depositional sequences in the Kimmeridgian of the Voconian Basin (France) controlled by carbonate export from shallow-water platforms, Geobios, 36, 675683.
  • Cotillon, P., and M. Rio (1984), Cyclic sedimentation in the Cretaceous of Deep Sea Drilling Project Sites 535 and 540 (Gulf of Mexico), 534 (central Atlantic) and in the Vocontian Basin (France), Initial Rep. Deep Sea Drill. Proj., 77, 339376.
  • Delamette, M. (1988), L'Evolution du domaine helvétique (entre Bauges et Morcles) de l'Aptien supérieur au Turonien: Séries condensées, phosphorites, et circulations océaniques, Publ. Dep. Géol. Paléontol. Univ. Genève, 5, 1316.
  • Dickens, G. R., J. R. O'Neil, D. K. Rea, and R. M. Owen (1995), Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 965971.
  • Droxler, A. W., W. Schlager, and C. C. Whallon (1983), Quaternary aragonite cycles and oxygen isotope record in Bahamian carbonate ooze, Geology, 11, 235239.
  • Emmanuel, L., and M. Renard (1993), Carbonate geochemistry (Mn, δ13C, δ18O) of the late Tithonian-Berriasian pelagic limestones of the Vocontian trough (SE France), Bull. Cent. Rech. Explor. Prod. Elf Aquitaine, 17, 205221.
  • Erba, E., J. E. T. Chanell, M. Claps, C. Jones, R. Larson, B. Opdyke, I. Premoli Silva, A. Riva, G. Salvini, and S. Torricelli (1999), Integrated stratigraphy of the Cismon Apticore (southern Alps, Italy): A “reference section” for the Barremian-Aptian interval at low latitudes, J. Foraminiferal Res., 29, 371391.
  • Erba, E., A. Bartolini, and R. L. Larson (2004), Valanginian Weissert oceanic anoxic event, Geology, 32, 149152.
  • Erbacher, J., J. Thurow, and R. Littke (1996), Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea-level changes in mid-Cretaceous pelagic environments, Geology, 24, 499502.
  • Erbacher, J., B. T. Huber, R. D. Norris, and M. Markey (2001), Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period, Nature, 409, 325327.
  • Fichter, H. J. (1934), Geologie der Bauen-Brisen-Kette, Beitr. Geol. Karte Schweiz, 69, 1128.
  • Flügel, E. (2004), Microfacies of Carbonate Rocks, 976 pp., Springer, New York.
  • Föllmi, K. B. (1989a), Evolution of the Mid-Cretaceous triad, Lect. Notes Earth Sci., 23, 1153.
  • Föllmi, K. B. (1989b), Beschreibung neugefundener Ammonoidea aus der Vorarlberger Garschella-Formation (Aptian-Albian), Jahrb. Geol. Bundesanst., 132, 105189.
  • Föllmi, K. B. (1995), 160 m.y. record of marine sedimentary phosphorus burial: Coupling of climate and continental weathering under greenhouse and icehouse conditions, Geology, 23, 859862.
  • Föllmi, K. B., and M. Delamette (1991), Comment on: Model simulation of mid-Cretaceous ocean circulation, Science, 251, 94.
  • Föllmi, K. B., and P. J. Ouwehand (1987), Garschella-Formation und Götzis-Schichten (Aptian-Coniacian): Neue stratigraphische Daten aus dem Helvetikum der Ostschweiz und des Vorarlbergs, Eclogae Geol. Helv., 80, 141191.
  • Föllmi, K. B., H. Weissert, M. Bisping, and H. Funk (1994), Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin, Geol. Soc. Am. Bull., 106, 729746.
  • Funk, H. P., K. B. Föllmi, and H. Mohr (1993), Evolution of the Tithonian-Aptian carbonate platform along the northern Tethyan margin, eastern Helvetic Alps, in Cretaceous Carbonate Platforms, edited by T. Simo, R. W. Scott, and J. P. Masse, AAPG Mem., 56, 387407.
  • Ganz, E. (1912), Stratigraphie der mittleren Kreide (Gargasien, Albien) der oberen helvetischen Decken in den nördlichen Schweizeralpen, Denkschr. Schweiz. Naturforsch. Ges., 42(1), 1148.
  • Garcia-Hernandez, M. (1979), Les faciès urgoniens pendant la sédimentation barrémo-albienne dans les Sierras de Cazorla et du Segura (zone prébétique, S-E de l'Espagne), Mem. Spec. Geobios, 3, 5769.
  • Godet, A., S. Bodin, K. B. Föllmi, J. Vermeulen, S. Gardin, N. Fiet, T. Adatte, B. Zsolt, D. Stüben, and B. van de Schootbrugge (2006a), Evolution of the marine stable carbon-isotope record during the Early Cretaceous: A focus on the late Hauterivian and Barremian in the Tethyan realm, Earth Planet. Sci. Lett., 242, 254271.
  • Godet, A., S. Bodin, K. B. Föllmi, J. Vermeulen, S. Gardin, N. Fiet, T. Adatte, Z. Berner, and D. Stuben (2006b), Clay mineral assemblages along the northern Tethyan margin during the late Hauterivian–early Aptian: Interactions between climate change and carbonate platform evolution, Cretaceous Res., in press.
  • Golonka, J. (2004), Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic, Tectonophysics, 381, 235273.
  • Gradstein, F. M., J. G. Ogg, and A. G. Smith (2004), A Geologic Time Scale 2004, 600 pp., Cambridge Univ. Press, New York.
  • Haldimann, P. (1977), Sedimentologische Entwicklung der Schichten an einer Zyklengrenze der helvetischen Unterkreide, Mitt. Geol. Inst. Eidg. Tech. Hochsch. Univ. Zürich, 219, 1183.
  • Hallock, P., and W. Schlager (1986), Nutrient excess and the demise of coral reefs and carbonate platforms, Palaios, 1, 389398.
  • Heim, A. (19101916), Monographie der Churfirsten-Mattstock-Gruppe, Beitr. Geol. Karte Schweiz, 20(13), 573 pp.
  • Heim, A. (1924), Über submarine Denudation und chemische Sedimente, Geol. Rundsch., 15, 147.
  • Heim, A. (1934), Stratigraphische Kondensation, Eclogae Geol Helv., 27, 372383.
  • Heim, A., and O. Seitz (1934), Die mittlere Kreide in den helvetischen Alpen von Rheintal und Vorarlberg und das Problem der Kondensation, Denkschr. Schweiz. Naturforsch. Ges., 69(2), 185310.
  • Heimhofer, U., P. A. Hochuli, J. O. Herrle, N. Andersen, and H. Weissert (2004), Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (early Aptian, SE France), Earth Planet. Sci. Lett., 223, 303318.
  • Hennig, S., H. Weissert, and L. Bulot (1999), C-isotope stratigraphy, a calibration tool between ammonite- and magnetostratigraphy: The Valanginian-Hauterivian transition, Geol. Carpatica, 50, 9196.
  • Herrle, J. O., P. Kößler, O. Friedrich, H. Erlenkeuser, and C. Hemleben (2004), High-resolution carbon isotope records of the Aptian to lower Albian from SE France and the Mazagan Plateau (DSDP Site 545), A stratigraphic tool for paleoceanographic and paleobiologic reconstruction, Earth Planet. Sci. Lett., 218, 149161.
  • Hoefs, J. (1997), Stable Isotope Geochemistry, 201 pp., Springer, New York.
  • Höfling, R., and R. W. Scott (2002), Early and mid-Cretaceous buildups, in Phanerozoic Reef Patterns, edited by W. Kiessling, E. Flügel, and J. Golonka, Spec. Publ. Soc. SEPM Sediment. Geol., 72, 521548.
  • Immenhauser, A., G. Della Porta, J. A. M. Kenter, and J. R. Bahamonde (2003), An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O, Sedimentology, 50, 953959.
  • Immenhauser, A., H. Hillgärtner, and E. van Bentum (2005), Microbial-foraminiferal episodes in the early Aptian of the southern Tethyan margin: Ecological significance and possible relation to oceanic anoxic event 1a, Sedimentology, 52, 7799.
  • James, N. P. (1997), The cool-water carbonate depositional realm, in Cool-Water Carbonates, edited by N. P. James, and J. A. D. Clarke, Spec. Publ. Soc. SEPM Sediment. Geol., 56, 120.
  • Jenkyns, H. C. (1980), Cretaceous anoxic events: From continents to oceans, J. Geol. Soc. London, 137, 171188.
  • Jenkyns, H. C. (2003), Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world, Philos. Trans. R. Soc. London, Ser. A, 361, 18651916.
  • Jenkyns, H. C., and P. A. Wilson (1999), Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific gyots: Relics from a greenhouse Earth, Am. J. Sci., 299, 341392.
  • Kawahata, H., A. Suzuki, and K. Goto (1997), Coral reef ecosystems as a source of atmospheric CO2: Evidence from PCO2 measurements of surface waters, Coral Reefs, 16, 261266.
  • Kuhn, O. (1996), Der Einfluss von Verwitterung auf die Paläozeanographie zu Beginn des Kreide-Treibhausklimas (Valanginian und Hauterivian) in der West-Tethys, Ph.D. thesis, Eidg. Tech. Hochsch. Zürich, Zürich, Switzerland.
  • Kuhnt, W., M. Moullade, J. P. Masse, and H. Erlenkeuser (1998), Carbon isotope stratigraphy of the lower Aptian historical stratotype at Cassis-La Bédoule (S.E. France), Geol. Mediterr., 25(3–4), 6379.
  • Kump, L. R., and M. A. Arthur (1999), Interpreting carbon-isotope excursions: Carbonates and organic matter, Chem. Geol., 161, 181198.
  • Leckie, R. M., T. J. Bralower, and R. Cashman (2002), Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous, Paleoceanography, 17(3), 1041, doi:10.1029/2001PA000623.
  • Lees, A., and A. T. Buller (1972), Modern temperate water and warm water shelf carbonate sediments contrasted, Mar. Geol., 13, 17671773.
  • Linder, P., J. Gigandet, J. L. Hüsser, F. Gainon, and K. B. Föllmi (2006), The early Aptian Grünten member, Eclogae Geol. Helv., in press.
  • Lini, A., H. Weissert, and E. Erba (1992), The Valanginian carbon isotope event: A first episode of greenhouse climate conditions during the Cretaceous, Terra Nova, 4, 374384.
  • Masse, J.-P. (1993), Valanginian-early Aptian carbonate platforms from Provence, southeastern France, in Cretaceous Carbonate Platforms, edited by T. Simo, R. W. Scott, and J. P. Masse, AAPG Mem., 56, 363374.
  • Menegatti, A. P., H. Weissert, R. S. Brown, R. V. Tyson, P. Farrimond, A. Strasser, and M. Caron (1998), High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys, Paleoceanography, 13, 530545.
  • Michalík, J. (1994), Lower Cretaceous carbonate platform facies, western Carpathians, Palaeogeogr. Palaeoclimatol. Palaeoecol., 111, 263277.
  • Morycowa, E. (1980), Preservation of skeletal microstructure in fossil Scleractinia, Acta Palaeontol. Polonica, 25, 912.
  • Mohr, H. (1992), Der helvetische Schelf der Ostschweiz am Übergang vom späten Jura zur frühen Kreide, Ph.D. thesis, Eidg. Tech. Hochsch. Zürich, Switzerland.
  • Mohr, H., and H. Funk (1995), Die Entwicklung der helvetischen Karbonatplattform in der Ostschweiz (Tithonian-Berriasian): Eine sequenzstratigraphische Annäherung, Eclogae Geol. Helv., 88, 281320.
  • Moullade, M., W. Kuhnt, J. A. Bergen, J.-P. Masse, and G. Tronchetti (1998), Correlation of biostratigraphic and stable isotope events in the Aptian historical stratotype of La Bedoule (southeast France), C. R. Acad. Sci., Ser. IIa Sci. Terre Planetes, 327, 693698.
  • Mutti, M., and P. Hallock (2003), Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints, Int. J. Earth Sci., 92, 465475.
  • Ouwehand, P. J. (1987), Die Garschella-Formation (“Helvetischer Gault”, Aptian-Cenomanian) der Churfirsten-Alvier Region (Ostschweiz), Mitt. Geol. Inst. Eidg. Tech. Hochsch. Univ. Zürich, 275, 1296.
  • Panchuk, K. M., C. Holmden, and L. R. Kump (2005), Sensitivity of the epeiric sea carbon isotope record to local-scale carbon cycle processes: Tales from the Mohawkian Sea, Palaeogeogr. Palaeoclimat. Palaeoecol., 228, 320337.
  • Panchuk, K. M., C. E. Holmden, and S. A. Leslie (2006), Local controls on carbon cycling in the Ordovician midcontinent region of North America, with implications for carbon isotope secular curves, J. Sediment. Res., 76, 200211.
  • Pascal, A. (1982), Evolution des systèmes biosédimentaires urgoniens en Espagne du Nord, N. Jb. geol. Paläont. Abh., 165/1, 7786.
  • Philip, J. (2003), Peri-Tethyan neritic carbonate areas: Distribution through time and driving factors, Palaeogeogr., Palaeoclimat., Palaeoecol., 196, 1937.
  • Price, G. D. (2003), New constraints upon isotope variation during the early Cretaceous (Barremian–Cenomanian) from the Pacific Ocean, Geol. Mag., 140, 513522.
  • Reboulet, S., E. Mattioli, B. Pittet, F. Baudin, D. Olivero, and O. Proux (2003), Ammonoid and nannoplankton abundance in Valanginian (early Cretaceous) limestone-marl successions from the southeast France basin: Carbonate dilution or productivity? Palaeogeogr., Palaeoclimat., Palaeoecol., 201, 113139.
  • Romanek, C. S., E. L. Grossmann, and J. W. Morse (1992), Carbon isotope fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate, Geochim. Cosmochim. Acta, 56, 419430.
  • Schaub, H. P. (1936), Geologie des Rawilgebietes, Eclogae Geol. Helv., 29, 337407.
  • Schaub, H. P. (1948), Über Aufarbeitung und Kondensation, Eclogae Geol. Helv., 41, 8994.
  • Schlager, W. (1981), The paradox of drowned reefs and carbonate platforms, Geol. Soc. Am. Bull., 92, 197211.
  • Schlanger, S. O., and H. C. Jenkyns (1976), Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw, 55, 179184.
  • Scholle, P. A., and M. A. Arthur (1980), Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, Am. Assoc. Petrol. Geol. Bull., 64, 6787.
  • Smith, A. M., C. S. Nelson, and H. G. Spencer (1998), Skeletal carbonate mineralogy of New Zealand bryozoans, Mar. Geol., 151, 2746.
  • Sprinkle, J., and P. M. Kier (1987), Phylum Echinodermata, in Fossil Invertrebrates, edited by R. S. Boardman, A. H. Cheetham, and A. J. Rowell, pp. 550611, Blackwell Sci., Malden, Mass.
  • Steuber, T. (2002), Plate tectonic control on the evolution of Cretaceous platform-carbonate production, Geology, 30, 259262.
  • Suzuki, A., and H. Kawahata (2003), Carbon budget of coral reef systems: An overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions, Tellus, 55B, 428444.
  • Suzuki, A., and H. Kawahata (2004), Reef water CO2 system and carbon production of coral reefs: Topographic control of system-level performance, in Global environmental change in the ocean and on land, edited by M. Shiyomi et al., Terrapub, pp. 229248.
  • Suzuki, A., A. Kawahata, T. Ayukai, and K. Goto (2001), The oceanic CO2 system and carbon budget in the Great Barrier Reef, Australia, Geophys. Res. Lett., 28, 12431246.
  • Swart, P. K., and G. Eberli (2005), The nature of the δ13C of periplatform sediments: Implications for stratigraphy and the global carbon cycle, Sedim. Geol., 175, 115129.
  • Thomas, H., Y. Bozec, K. Elkalay, and H. J. W. de Baar (2004), Enhanced open ocean storage of CO2 from shelf sea pumping, Science, 304, 10051008.
  • van de Schootbrugge, B. (2001), Influence of paleo-environmental changes during the Hauterivian (early Cretaceous) on carbonate deposition along the northern margin of the Tethys: Evidence from geochemical records (C, O, and Sr-isotopes, P, Fe, Mn), Ph. D. thesis, Univ. Neuchâtel, Neuchâtel, Switzerland.
  • van de Schootbrugge, B., K. B. Föllmi, L. G. Bulot, and S. J. Burns (2000), Paleoceanographic changes during the early Cretaceous (Valanginian-Hauterivian): Evidence from oxygen and carbon stable isotopes, Earth Planet. Sci. Lett., 181, 1531.
  • van de Schootbrugge, O. Kuhn, T. Adatte, P. Steinmann, and K. B. Föllmi (2003), Decoupling of P- and Corg-burial following Early Cretaceous (Valanginian-Hauterivian) platform drowning along the NW Tethyan margin, Palaeogeogr., Palaeoclimat., Palaeoecol., 199, 315331.
  • van de Schootbrugge, B., J. M. McArthur, T. R. Bailey, Y. Rosenthal, J. D. Wright, and K. G. Miller (2005), Toarcian oceanic anoxic event: An assessment of global causes using belemnite C isotope records, Paleoceanography, 20, PA3008, doi:10.1029/2004PA001102.
  • Veizer, J., D. Ala, K. Azmy, P. Bruckschen, D. Buhl, F. Bruhn, G. A. F. Carden, A. Diener, S. Ebneth, Y. Godderis, T. Jasper, C. Korte, F. Pawellek, O. Podlaha, and H. Strauss (1999), 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 161, 5988.
  • Wefer, G., and W. H. Berger (1991), Isotope paleontology: Growth and composition of extant calcareous species, Mar. Geol., 100, 207248.
  • Weissert, H. (1981), The environment of deposition of black shales in the early Cretaceous: An ongoing controversy, in The Deep Sea Drilling Project: A decade of progress, edited by J. E. Warme, R. G. Douglas, and E. L. Winterer, Soc. Econ. Paleont. Mineral., Spec. Vol. 32, 547560.
  • Weissert, H. (1989), C-Isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the Early Cretaceous, Surv. Geophys., 10, 161.
  • Weissert, H., and J. E. T. Channell (1989), Tethyan carbonate carbon isotope stratigraphy across the Jurassic-Cretaceous boundary: An indicator of decelerated global carbon cycling? Paleoceanography, 4, 483494.
  • Weissert, H., and E. Erba (2004), Volcanism, CO2 and palaeoclimate: A late Jurassic-early Cretaceous carbon and oxygen isotope record, Journ. Geol. Soc. London, 161, 695702.
  • Weissert, H., J. A. McKenzie, and P. Hochuli (1979), Cyclic anoxic events in the early Cretaceous Tethys ocean, Geology, 7, 147151.
  • Weissert, H., A. Lini, K. B. Föllmi, and O. Kuhn (1998), Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link? Palaeogeogr., Palaeoclimat., Palaeoecol., 137, 189203.
  • Wissler, L., H. Weissert, J.-P. Masse, and L. G. Bulot (2002), Chemostratigraphic correlation of Barremian and lower Aptian ammonite zones and magnetic reversals, Intern. Journ. Earth Sci. (Geol. Rundsch.), 91, 272279.
  • Wissler, L. H., H. Funk, and H. Weissert (2003), Response of early Cretaceous carbonate platforms to changes in atmospheric carbon dioxide levels, Palaeogeogr. Palaeoclimatol. Palaeoecol., 200, 187205.
  • Woo, K. S., T. F. Anderson, and P. A. Sandberg (1993), Diagenesis of skeletal and nonskeletal components of mid-Cretaceous limestones, J. Sediment. Petrol., 63, 1832.
  • Wyssling, G. W. (1986), Der frühkretazische helvetische Schelf im Vorarlberg und Allgäu, Jahrb. Geol. Bundesanst., 129, 161265.