SEARCH

SEARCH BY CITATION

References

  • Aubry, M.-P. (1999), Late Paleocene-early Eocene sedimentary history in western Cuba: Implications for the LPTM and regional tectonic history, Micropaleontology, 45, 518.
  • Aubry, M.-P., W. A. Berggren, L. D. Stott, and A. Sinha (1996), The upper Paleocene-lower Eocene stratigraphic record and the Paleocene-Eocene boundary carbon isotope excursion: Implications for geochronology, in Correlation of the Early Paleogene in Northwest Europe, edited by R. W. O. B. Knox, R. M. Corfield, and R. E. Dunay, Spec. Publ. Geol. Soc., 101, 353380.
  • Backman, J., and I. Raffi (1997), Calibration of Miocene nannofossil events to orbitally tuned cyclostratigraphies from Ceara Rise, Proc. Ocean Drill. Program, Sci. Results, 154, 8399.
  • Backman, J., and N. J. Shackleton (1983), Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific Ocean, Mar. Micropaleontol., 8, 141170.
  • Bains, S., R. D. Norris, R. M. Corfield, G. J. Bowen, P. D. Gingerich, and P. L. Koch (2003), Marine-terrestrial linkages at the Paleocene-Eocene boundary, in Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by S. L. Wing et al., Spec. Pap. Geol. Soc. Am., 369, 19.
  • Berger, A., M. F. Loutre, and J. Laskar (1992), Stability of the astronomical frequencies over the Earth's history for paleoclimate studies, Science, 255, 560566.
  • Berggren, W. A., and M.-P. Aubry (1996), A late Paleocene-early Eocene NW European and North Sea magnetobiochronology correlation network, in Correlation of the Early Paleogene in Northwest Europe, edited by R. W. O. B. Knox, R. M. Corfield, and R. E. Dunay, Spec. Publ. Geol. Soc., 101, 309352.
  • Berggren, W. A., D. V. Kent, C. C. Swisher III, and M. P. Aubury (1995), A revised Cenozoic geochronology and chronostratigraphy, in Geochronology, Time Scales and Global Stratigraphic Correlation, edited by W. A. Berggren et al., Spec. Publ. Soc. SEPM Sediment. Geol., 54, 129212.
  • Bird, D. K., L. E. Heister, C. K. Brooks, and C. Tegner (2003), Linking tephras and Paleocene-Eocene paleoclimate of Denmark to flood and Plinian volcanism of East Greenland (abstract), Geophys. Res. Abstr., 5, 14310.
  • Bukry, D. (1973), Low-latitude coccolith biostratigraphic zonation, Initial Rep. Deep Sea Drill. Proj., 15, 685703.
  • Bukry, D. (1978), Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean, Deep Sea Drilling Project Leg 32, Initial Rep. Deep Sea Drill. Proj., 32, 677701.
  • Cande, S. C., and D. V. Kent (1992), A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 97, 13,91713,951.
  • Cande, S. C., and D. V. Kent (1995), Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, 60936095.
  • Cramer, B. S. (2001), Latest Paleocene-earliest Eocene cyclostratigraphy: Using core photographs for reconnaissance geophysical logging, Earth Planet. Sci. Lett., 186, 231244.
  • Cramer, B. S., J. D. Wright, D. V. Kent, and M.-P. Aubry (2003), Orbital climate forcing of δ13C excursions in the late Paleocene–Eocene (chrons C24n–C25n), Paleoceanography, 18(4), 1097, doi:10.1029/2003PA000909.
  • Dehant, V., M. F. Loutre, and A. Berger (1987), Les variations à court et à long terme de la rotation de la Terre et de la précession astronomique, Rep.87/12, Inst. d'Astron. et de Géophys. Lémâitre, G., Univ. Cath. de Louvain, Louvain-la-Neuve, France.
  • Dinarès-Turell, J., J. I. Baceta, V. Pujalte, X. Orue-Etxebarria, and G. Bernaola (2002), Magnetostratigraphic and cyclostratigraphic calibration of a prospective Palaeocene/Eocene stratotype at Zumaia (Basque Basin, northern Spain), Terra Nova, 14, 371378.
  • Evans, H. F., T. Westerhold, and J. E. T. Channell (2004), ODP Site 1092: Revised composite depth section has implications for Upper Miocene ‘cryptochron’, Geophys. J. Int., 156, 195199.
  • Farley, K. A., and S. F. Eltgroth (2003), An alternative age model for the Paleocene-Eocene thermal maximum using extraterrestrial 3He, Earth Planet. Sci. Lett., 208, 135148.
  • Ferraz-Mello, S. (1981), Estimation of periods from unequally spaced observations, Astron. J., 86, 619624.
  • Gradstein, F., J. Ogg, and A. Smith (2004), A Geological Timescale 2004, Cambridge Univ. Press, New York.
  • Hallam, A., J. M. Hancock, J. L. LaBreque, W. Lowrie, and J. E. T. Channell (1985), Jurassic to Paleogene: part I. Jurassic and Cretaceous geochronology and Jurassic to Palaeogene magnetostratigraphy, in The Chronology of the Geological Record, edited by N. J. Snelling, pp. 118140, Geological Society, London.
  • Herbert, T. D., I. Premoli-Silva, E. Erba, and A. G. Fischer (1995), Orbital chronology of Cretaceous-Paleocene marine sediments, in Geochronology, Time Scales and Global Stratigraphic Correlation, edited by W. A. Berggren et al., Spec. Publ. SEPM Sediment. Geol., 54, 8193.
  • Hilgen, F. (1991), Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary, Earth Planet. Sci. Lett., 107, 349368.
  • Hilgen, F. J., et al. (1999), Present status of the astronomical (polarity) time-scale for the Mediterranean late Neogene, Philos. Trans. R. Soc. London, Ser. A, 357, 19311947.
  • Hinnov, L. A. (2000), New perspectives on orbitally forced stratigraphy, Annu. Rev. Earth Planet. Sci., 28, 419475.
  • Hinnov, L. A. (2004), Earth's orbital parameters and cycle stratigraphy, in A Geological Timescale 2004, edited by F. Gradstein, J. Ogg, and A. Smith, pp. 5562, Cambridge Univ. Press, New York.
  • Jansen, J. H. F., S. J. Van der Gaast, B. Koster, and A. J. Vaars (1998), CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores, Mar. Geol., 151, 143153.
  • Katz, M. E., D. K. Pak, G. R. Dickens, and K. G. Miller (1999), The source and fate of massive carbon input during the latest Paleocene thermal maximum, Science, 286, 15311533.
  • Kennett, J. P., and L. D. Stott (1991), Abrupt deep sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene, Nature, 353, 225229.
  • Kent, D. V., B. S. Cramer, L. Lanci, D. Wang, J. D. Wright, and R. Van der Voo (2003), A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion, Earth Planet. Sci. Lett., 211, 1326.
  • Kirschvink, J. L. (1980), The least-squares line and plane and the analysis of paleomagnetic data, Geophys. J. R. Astron. Soc., 62, 699718.
  • Koch, P. L., J. C. Zachos, and P. Gingerich (1992), Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary, Nature, 358, 319322.
  • Kuiper, K. F., F. J. Hilgen, J. Steenbrink, and J. R. Wijbrans (2004), 40Ar/39Ar ages of tephras intercalated in astronomically tuned Neogene sedimentary sequences in the Mediterranean, Earth Planet. Sci. Lett., 222, 583597.
  • Kuiper, K. F., J. R. Wijbrans, and F. J. Hilgen (2005), Radioisotopic dating of the Tortonian global stratotype section and point: Implications for intercalibration of 40Ar/39Ar and astronomical dating methods, Terra Nova, 17, 385398.
  • Laskar, J. (1999), The limits of Earth orbital calculations for geological time-scale use, Philos. Trans. R. Soc. London, Ser. A, 357, 17351759.
  • Laskar, J., P. Robutel, F. Joutel, M. Gastineau, A. Correia, and B. Levrard (2004), A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261285.
  • Lourens, L. J., A. Sluijs, D. Kroon, J. C. Zachos, E. Thomas, U. Röhl, J. Bowles, and I. Raffi (2005), Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 10831087.
  • Luterbacher, H. P., J. Hardenbol, and B. Schmitz (2000), Decision of the voting members of the International Subcommission on Paleogene Stratigraphy on the criterion of recognition of the Paleocene/Eocene boundary, Newsl. Int. Subcommi.Paleogene Stratigr., 9, 13 pp.
  • Machlus, M., S. R. Hemming, P. E. Olsen, and N. Christie-Blick (2004), Eocene calibration of geomagnetic polarity time scale reevaluated: Evidence from the Green River Formation of Wyoming, Geology, 32, 137140.
  • Martini, E. (1971), Standard Tertiary and Quaternary calcareous nannoplankton zonation, in Proceedings of 2nd International Conference Planktonic Microfossils Roma, edited by A. Farinacci, pp. 739785, Tecnosci., Rome.
  • Néron de Surgy, O., and J. Laskar (1997), On the long term evolution of the spin of the Earth, Astron. Astrophys., 318, 975989.
  • Norris, R. D., and U. Röhl (1999), Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition, Nature, 401, 775778.
  • Norris, R. D., et al.(1998) Black Nose Paleoceanographic Transect, Western North Atlantic, 1749 pp., Ocean Drill. Program, College Station, Tex.
  • Ogg, J. G., and L. Bardot (2001), Aptian through Eocene magnetostratigraphic correlation of the Blake Nose Transect (Leg 171B), Florida continental margin [online], Proc. Ocean Drill. Program Sci. Results, 171B, 158. (Available at http://www-odp.tamu.edu/publications/171B_SR/chap_09/chap_09.htm).
  • Ogg, J. G., and A. G. Smith (2004), The geomagnetic polarity time scale, in A Geological Timescale 2004, edited by F. Gradstein, J. Ogg, and A. Smith, pp. 6386, Cambridge Univ. Press, New York.
  • Paillard, D., L. Labeyrie, and P. Yiou (1996), Macintosh program performs time-series analysis, Eos Trans. AGU, 77, 379. (Available at http://www.agu.org/eos_elec/96097e.html).
    Direct Link:
  • Pälike, H., J. Laskar, and N. J. Shackleton (2004), Geologic constraints on the chaotic diffusion of the solar system, Geology, 32, 929932.
  • Raffi, I., J. Backman, and H. Pälike (2005), Changes in calcareous nannofossil assemblages across the Paleocene/Eocene transition from the paleo-equatorial Pacific Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 226, 93126.
  • Rio, D., I. Raffi, and G. Villa (1990), Pliocene-Pleistocene calcareous nannofossil distribution patterns in the Mediterranean, Proc. Ocean Drill. Program Sci. Results, 107, 513533.
  • Röhl, U., and L. J. Abrams (2000), High-resolution, downhole and non-destructive core measurements from Sites 999 and 1001 in the Caribbean Sea: Application to the late Paleocene thermal maximum, Proc. Ocean Drill. Program Sci. Results, 165, 191203.
  • Röhl, U., T. J. Bralower, R. D. Norris, and G. Wefer (2000), New chronology for the late Paleocene thermal maximum and its environmental implications. Geology, 28, 927930.
  • Röhl, U., R. D. Norris, and J. G. Ogg (2003), Cyclostratigraphy of upper Paleocene and lower Eocene sediments at Blake Nose Site 1051 (western North Atlantic), in Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by S. L. Wing et al., Spec. Pap. Geol. Soc. Am., 369, 576589.
  • Röhl, U., T. Westerhold, T. J. Bralower, M.-R. Petrizzo, and J. C. Zachos (2004), An early late Paleocene global dissolution event and new constraints for an astronomically-tuned early Paleogene time scale, paper presented at 8th International Conference on Paleoceanography, Environ. et Paleoenviron. Ocean., Biarritz, France.
  • Röhl, U., T. Westerhold, S. Monechi, E. Thomas, J. C. Zachos, and B. Donner (2005), The third and final early Eocene thermal maximum: Characteristics, timing and mechanisms of the “X” event, paper presented at Annual Meeting, Geol. Soc. of Am., Salt Lake City, Utah.
  • Schmitz, B., V. Pujalte, and K. Nunez-Betelu (2001), Climate and sea-level perturbation during the initial Eocene thermal maximum: Evidence from siliciclastic units in the Basque Basin (Ermua, Zumaia and Trabakua Pass), Palaeogeogr. Palaeoclimatol. Palaeoecol., 165, 299320.
  • Schoene, B., and S. A. Bowring (2006), U-Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb, Contrib. Mineral.Petrol., 151, 615630.
  • Schoene, B., J. L. Crowley, D. J. Condon, M. D. Schmitz, and S. A. Bowring (2006), Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data, Geochim. Cosmochim. Acta, 70, 426445.
  • Schulz, M., W. H. Berger, M. Sarnthein, and P. M. Grootes (1999), Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass, Geophys. Res. Lett., 26, 33853388.
  • Shackleton, N. J., and S. Crowhurst (1997), Sediment fluxes based on an orbitally tuned time scale 5 to 14 Ma, Site 926, Proc. Ocean Drill. Program Sci. Results, 154, 6982.
  • Shackleton, N. J., T. King Hagelberg, and S. J. Crowhurst (1995), Evaluating the success of astronomical tuning: Pitfalls of using coherence as a criterion for assessing pre-Pleistocene timescales, Paleoceanography, 10, 693697.
  • Shackleton, N. J., S. J. Crowhurst, G. P. Weedon, and J. Laskar (1999), Astronomical calibration of Oligocene-Miocene time, Philos. Trans. R. Soc. London A, 357, 19071929.
  • Shackleton, N. J., M. A. Hall, I. Raffi, L. Tauxe, and J. Zachos (2000), Astronomical calibration age for the Oligocene-Miocene boundary, Geology, 28, 447450.
  • Shipboard Scientific Party (2004a), Explanatory notes, Proc. Ocean Drill. Program Initial Rep. [CD-ROM], 208, 163.
  • Shipboard Scientific Party (2004b), Leg 208 summary, Proc. Ocean Drill. Program Initial Rep. [CD-ROM], 208, 1112.
  • Shipboard Scientific Party (2004c), Site 1262, Proc. Ocean Drill. Program Initial Rep. [CD-ROM], 208, 192.
  • Shipboard Scientific Party (2004d), Site 1263, Proc. Ocean Drill. Program Initial Rep. [CD-ROM], 208, 187.
  • Shipboard Scientific Party (2004e), Site 1265, Proc. Ocean Drill. Program Initial Rep. [CD-ROM], 208, 1107.
  • Shipboard Scientific Party (2004f), Site 1267, Proc. Ocean Drill. Program Initial Rep. [CD-ROM], 208, 177.
  • Swisher, C. C.III, and R. W. O. B. Knox (1991), The age of the Paleocene/Eocene boundary: 40Ar/39Ar dating of the lower part of NP10, North Sea Basin and Denmark, paper presented at International Geological Correlation Project 308 Meeting, Brussels, Belgium.
  • Tauxe, L., J. Gee, Y. Gallet, T. Pick, and T. Bown (1994), Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming: New constraints on the location of Paleocene/Eocene boundary, Earth Planet. Sci. Lett., 125, 159172.
  • Tauxe, L., T. Pick, and Y. S. Kok (1995), Relative paleointensity in sediments: A pseudo-Thellier approach, Geophys. Res. Lett., 22, 28852888.
  • Tripati, A. K., M. L. Delaney, J. C. Zachos, L. D. Anderson, D. C. Kelly, and H. Elderfield (2003), Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera, Paleoceanography, 18(4), 1101, doi:10.1029/2003PA000937.
  • Varadi, F., B. Runnegar, and M. Ghil (2003), Successive refinements in long-term integrations of planetary orbits, Astrophys. J., 592, 620630.
  • Villeneuve, M. (2004), Radiogenic isotope geochronology, in A Geological Timescale 2004, edited by F. Gradstein, J. Ogg, and A. Smith, pp. 8795, Cambridge Univ. Press, New York.
  • Weedon, G. P. (1993), The recognition and stratigraphic implications of orbital-forcing of climate and sedimentary cycles, Sedimentology Review, edited by V. P. Wright et al., pp. 3150, Blackwell Sci., Malden, Mass.
  • Weedon, G. P. (2003), Time-Series Analysis and Cyclostratigraphy, 259 pp., Cambridge Univ. Press, New York.
  • Wing, S. L. (1984), A new basis for recognizing the Paleocene/Eocene boundary in western interior North America, Science, 226, 439441.
  • Wing, S. L., T. M. Brown, and J. D. Obradovich (1991), Early Eocene biotic and climatic change in interior western North America, Geology, 19, 11891192.
  • Wing, S. L., H. Bao, and P. L. Koch (2000), An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic, in Warm Climates in Earth History, edited by B. T. Huber, K. G. MacLeod, and S. L. Wing, pp. 197237, Cambridge Univ. Press, New York.
  • Zachos, J. C., et al. (2004), Proceedings of the Ocean Drilling Program Initial Report [CD-ROM], vol. 208, Ocean Drill. Program, College Station, Tex.
  • Zachos, J. C., et al. (2005), Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum, Science, 308, 16111615.