SEARCH

SEARCH BY CITATION

References

  • Arthur, M. A., W. E. Dean, and S. O. Schlanger (1985), Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 504529, AGU, Washington, D. C.
  • Arthur, M. A., S. O. Schlanger, and H. C. Jenkyns (1987), The Cenomanian-Turonian oceanic anoxic event, II, Paleoceanographic controls on organic matter-production and preservation, Spec. Publ. Geol. Soc. London, 26, 401420.
  • Arthur, M. A., W. E. Dean, and L. M. Pratt (1988), Geochemical and climatic effects of increased organic carbon burial at the Cenomanian/Turonian boundary, Nature, 335, 714717.
  • Barron, E. J., and W. M. Washington (1985), Warm Cretaceous climates: High atmospheric CO2 as a plausible mechanism, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 546553, AGU, Washington, D. C.
  • Bemis, B. E., H. J. Spero, J. Bijma, and D. W. Lea (1998), Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations, Paleoceanography, 13, 150160.
  • Bice, K. L., and R. D. Norris (2002), Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian), Paleoceanography, 17(4), 1070, doi:10.1029/2002PA000778.
  • Bice, K. L., D. Birgel, P. A. Meyers, K. A. Dahl, K.-U. Hinrichs, and R. D. Norris (2006), A multiple proxy and model study of the Cretaceous upper ocean temperatures and atmospheric CO2 concentrations, Paleoceanography, 21, PA2002, doi:10.1029/2005PA001203.
  • Brumsack, H.-J. (2006), Trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 232, 344361, doi:10.1016/j.palaeo.2005.05.011.
  • Clarke, L. J., and H. C. Jenkyns (1999), New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere, Geology, 27, 699702.
  • D'Hondt, S., and M. A. Arthur (1996), Late Cretaceous oceans and the cool tropical paradox, Science, 271, 18381841.
  • Dumitrescu, M., S. C. Brassell, S. Schouten, E. C. Hopmans, and J. S. Sinninghe Damsté (2006), Instability in tropical sea surface temperatures during the early Aptian, Geology, 34, 833836.
  • Eicher, D. L. (1969), Paleobathymetry of the Cretaceous Greenhorn Sea in eastern Colorado, AAPG Bull., 53, 10751090.
  • Eicher, D. L., and P. Worstell (1970), Cenomanian and Turonian foraminifera from the Great Plains, United States, Micropaleontology, 16, 269324.
  • Erba, E., and F. Tremolada (2004), Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmosphere CO2, and anoxia, Paleoceanography, 19, PA1008, doi:10.1029/2003PA000884.
  • Erbacher, J., and J. Thurow (1997), Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys, Mar. Micropaleontol., 30, 139158.
  • Erbacher, J., J. Thurow, and R. Littke (1996), Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea-level changes in mid-Cretaceous pelagic environments, Geology, 24, 499502.
  • Erbacher, J., B. T. Huber, R. D. Norris, and M. Markey (2001), Increased thermohaline stratification as a possible cause for an oceanic anoxic event in the Cretaceous period, Nature, 409, 325327.
  • Erbacher, J., et al. (2004), Proceedings of the Ocean Drilling Program, Initial Reports [online], vol. 207, Ocean Drill. Program, College Station, Tex. (Available at http://www-odp.tamu.edu/publications/207_IR/207ir.htm).
  • Erbacher, J., O. Friedrich, P. A. Wilson, H. Birch, and J. Mutterlose (2005), Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic, Geochem. Geophys. Geosyst., 6, Q06010, doi:10.1029/2004GC000850.
  • Fisher, C. G., and M. A. Arthur (2002), Water mass characteristics in the Cenomanian US Western Interior seaway as indicated by stable isotopes of calcareous organisms, Palaeogeogr. Palaeoclimatol. Palaeoecol., 188, 189213.
  • Föllmi, K. B., H. Weissert, M. Bisping, and H. Funk (1994), Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin, Geol. Soc. Am. Bull., 106, 729746.
  • Forster, A., H. Sturt, P. A. Meyers, and Shipboard Scientific Party (2004), Molecular biogeochemistry of Cretaceous black shales from the Demerara Rise: Preliminary shipboard results from sites 1257 and 1258, Leg 207 [online], Proc. Ocean Drill. Program Initial Rep., 207, 122. (Available at http://www-odp.tamu.edu/publications/207_IR/207ir.htm).
  • Freeman, K. H., and J. M. Hayes (1992), Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cycles, 6, 185198.
  • Friedrich, O., and J. Erbacher (2006), Benthic foraminiferal assemblages from Demerara Rise (ODP Leg 207, western tropical Atlantic): Possible evidence for a progressive opening of the Equatorial Atlantic Gateway, Cretaceous Res., 27, 377397.
  • Friedrich, O., J. Erbacher, and J. Mutterlose (2006), Paleoenvironmental changes across the Cenomanian/Turonian boundary event (oceanic anoxic event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207), Rev. Micropaleontol., 49, 121139.
  • Gale, A. S., and W. K. Christensen (1996), Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance, Bull. Geol. Soc. Denmark, 43, 6877.
  • Gale, A. S., H. C. Jenkyns, W. J. Kennedy, and R. M. Corfield (1993), Chemostratigraphy versus biostratigraphy: Data from around the Cenomanian-Turonian boundary, J. Geol. Soc. London, 150, 2932.
  • Gale, A. S., W. J. Kennedy, S. Voigt, and I. Walaszczyk (2005), Stratigraphy of the Upper Cenomanian–Lower Turonian chalk succession at Eastbourne, Sussex, UK: Ammonites, inoceramid bivalves and stable carbon isotopes, Cretaceous Res., 26, 460487.
  • Gradstein, F., J. Ogg, and A. Smith (2004), A Geologic Timescale 2004, 3rd ed., 610 pp., Cambridge Univ. Press, New York.
  • Gustafsson, M., A. Holbourn, and W. Kuhnt (2003), Changes in northwest Atlantic temperature and carbon flux during the Cenomanian/Turonian paleoceanographic event: The Goban Spur stable isotopic record, Palaeogeogr. Palaeoclimatol. Palaeoecol., 201, 5166.
  • Handoh, I. C., G. R. Bigg, and E. J. W. Jones (2003), Evolution of upwelling in the Atlantic Ocean basin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 202, 3158.
  • Hardas, P., and J. Mutterlose (2006), Calcareous nannofossil biostratigraphy of the Cenomanian/Turonian boundary interval of Leg 207 at the Demerara Rise, Revue Micropaleontol., 49, 165179.
  • Herbin, J. P., L. Montadert, C. Müller, R. Gomez, J. Thurow, and J. Wiedmann (1986), Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys, in North Atlantic Palaeoceanography, edited by C. P. Summerhayes, and N. J. Shackleton, Spec. Publ. Geol. Soc. London, 21, 389422.
  • Huber, B. T., D. A. Hodell, and C. P. Hamilton (1995), Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients, Geol. Soc. Am. Bull., 107, 11641191.
  • Huber, B. T., R. M. Leckie, R. D. Norris, T. J. Bralower, and E. CoBabe (1999), Foraminiferal assemblages and stable isotopic change across the Cenomanian-Turonian boundary in the subtropical North Atlantic, J. Foraminiferal Res., 29, 392417.
  • Ingall, E. D., R. M. Bustin, and P. van Cappellen (1993), Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales, Geochim. Cosmochim. Acta, 57, 303316.
  • Jarvis, I., G. A. Carson, M. K. E. Cooper, M. B. Hart, P. N. Leary, B. A. Tochter, D. Horne, and A. Rosenfeld (1988), Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event, Cretaceous Res., 9, 3103.
  • Jarvis, I., A. S. Gale, H. C. Jenkyns, and M. A. Pearce (2006), Secular variation in Late Cretaceous carbon isotopes: A new δ13C carbonate reference curve for the Cenomanian-Campanian (99.6–70.6 Ma), Geol. Mag., 143, 561608.
  • Jefferies, R. P. S. (1962), The palaeoecology of the Actinocamax Plenus subzone (lowest Turonian) in the Anglo-Paris Basin, Palaeontology, 4, 609647.
  • Jenkyns, H. C. (1980), Cretaceous anoxic events: From continents to oceans, J. Geol. Soc. London, 137, 171188.
  • Jenkyns, H. C., and P. A. Wilson (1999), Stratigraphy, paleoceanography and evolution of Cretaceous Pacific guyots: Relics from a greenhouse Earth, Am. J. Sci., 299, 341392.
  • Jenkyns, H. C., A. S. Gale, and R. M. Corfield (1994), Carbon- and oxygen isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance, Geol. Mag., 131, 134.
  • Jenkyns, H. C., A. Forster, S. Schouten, and J. S. Sinninghe Damsté (2004), High temperatures in the Late Cretaceous Arctic Ocean, Nature, 432, 888892.
  • Keller, G., and A. Pardo (2004), Age and paleoenvironment of the Cenomanian/Turonian global stratotype section and point at Pueblo, Colorado, Mar. Micropaleontol., 51, 95128.
  • Kenig, F., J. D. Hudson, J. S. Sinninghe Damsté, and B. N. Popp (2004), Intermittent euxinia: Reconciliation of a Jurassic black shale with its biofacies, Geology, 32, 421424, doi:10.1130/G20356.1.
  • Kennedy, W. J., I. Walaszczyk, and W. A. Cobban (2000), Pueblo, Colorado, USA, candidate Global Boundary Stratotype Section and Point for the base of the Turonian Stage of the Cretaceous, and for the Middle Turonian Substage, with a revision of the Inoceramidae (Bivalvia), Acta Geol. Pol., 50, 295334.
  • Kerr, A. C. (1998), Oceanic plateau formation: A case of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? J. Geol. Soc. London, 155, 619626.
  • Kolonic, S., et al. (2005), Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial, Paleoceanography, 20, PA1006, doi:10.1029/2003PA000950.
  • Kuhnt, W., F. Luderer, S. Nederbragt, J. Thurow, and T. Wagner (2005), Orbital-scale record of the late Cenomanian-Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco), Int. J. Earth Sci., 94, 147159.
  • Kuroda, J., N. O. Ogawa, M. Tanimizu, M. F. Coffin, H. Tukuyama, H. Kitazato, and N. Ohkouchi (2007), Contemporaneous massive subaerial volcanism and Late Cretaceous oceanic anoxic event 2, Earth Planet. Sci. Lett, in press.
  • Kuypers, M. M. M., R. D. Pancost, and J. S. Sinninghe Damsté (1999), A large and abrupt fall in atmospheric CO2 concentrations during Cretaceous times, Nature, 399, 342345.
  • Kuypers, M. M. M., P. Blokker, J. Erbacher, H. Kinkel, R. D. Pancost, S. Schouten, and J. S. Sinninghe Damsté (2001), Massive expansion of marine Archaea during a mid-Cretaceous oceanic anoxic event, Science, 293, 9294.
  • Kuypers, M. M. M., R. D. Pancost, I. A. Nijenhuis, and J. S. Sinninghe Damsté (2002), Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event, Paleoceanography, 17(4), 1051, doi:10.1029/2000PA000569.
  • Kuypers, M. M. M., L. J. Lourens, W. I. C. Rijpstra, R. D. Pancost, I. A. Nijenhuis, and J. S. Sinninghe Damsté (2004), Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2, Earth Planet. Sci. Lett., 228, 465482.
  • Lamolda, M. A., A. Gorostidi, and C. R. C. Paul (1994), Quantitative estimates of calcareous nannofossil changes across the Plenus Marls (latest Cenomanian), Dover, England: Implications for the generation of the Cenomanian-Turonian boundary event, Cretaceous Res., 15, 143164.
  • Lancelot, Y., et al. (1977), Initial Reports Deep Sea Drilling Project, vol. 41, 1259 pp., U.S. Govt. Print. Office, Washington, D. C.
  • Larson, R. L. (1991), Latest pulse of Earth; evidence for a mid-Cretaceous super-plume, Geology, 19, 547550.
  • Leckie, R. M., R. F. Yuretich, O. L. O. West, D. Finkelstein, and M. Schmidt (1998), Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomanian-Turonian boundary (Late Cretaceous), in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA, SEPM Concepts Sedimentol. Paleontol., vol. 6, edited by W. E. Dean, and M. A. Arthur, pp. 101126, Soc. for Sediment. Geol., Tulsa, Okla.
  • Leckie, R. M., T. J. Bralower, and R. Cashman (2002), Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous, Paleoceanography, 17(3), 1041, doi:10.1029/2001PA000623.
  • Meyers, S. R., B. B. Sageman, and L. A. Hinnov (2001), Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone Member using evolutive harmonic analysis and stratigraphic modeling, J. Sediment. Res., 71, 628644.
  • Murphy, A. E., B. B. Sageman, D. J. Hollander, T. W. Lyons, and C. E. Brett (2000), Black shale deposition and faunal overturn in the Devonian Appalachian basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling, Paleoceanography, 15, 280291.
  • Norris, R. D., K. L. Bice, E. A. Magno, and P. A. Wilson (2002), Jiggling the tropical thermostat in the Cretaceous hothouse, Geology, 30, 299302.
  • Pancost, R. D., N. Crawford, S. Magness, A. Turner, H. C. Jenkyns, and J. R. Maxwell (2004), Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events, J. Geol. Soc. London, 161, 353364.
  • Paul, C. R. C., M. A. Lamolda, S. F. Mitchell, M. R. Vaziri, A. Gorostidi, and J. D. Marshall (1999), The Cenomanian-Turonian boundary at Eastbourne (Sussex, UK): A proposed European reference section, Palaeogeogr. Palaeoclimatol. Palaeoecol., 150, 83121.
  • Poulsen, C. J., E. J. Barron, M. A. Arthur, and W. H. Peterson (2001), Response of mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings, Paleoceanography, 16, 576592.
  • Poulsen, C. J., A. S. Gendaszek, and R. L. Jakob (2003), Did rifting of the Atlantic Ocean cause the Cretaceous thermal maximum? Geology, 31, 115118.
  • Powers, L. A., J. P. Werne, T. C. Johnson, E. C. Hopmans, J. S. Sinninghe Damsté, and S. Schouten (2004), Crenarchaeotal membrane lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction? Geology, 32, 613616.
  • Pratt, L. M., and C. N. Threlkeld (1984), Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the western interior, U.S.A. Mem. Can. Soc. Pet. Geol., 9, 305312.
  • Premoli Silva, I., E. Erba, G. Slavini, C. Locatelli, and D. Verga (1999), Biotic changes in Cretaceous oceanic anoxic events of the Tethys, J. Foraminiferal Res., 29, 352370.
  • Prokoph, A., M. Villeneuve, F. P. Agterberg, and V. Rachold (2001), Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian-Turonian boundary, Geology, 29, 523526.
  • Sageman, B. B., S. R. Meyers, and M. A. Arthur (2006), Orbital time scale and new C-isotope record for Cenomanian-Turonian stratotype, Geology, 34, 125128.
  • Schlanger, S. O., and H. C. Jenkyns (1976), Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw, 55, 179184.
  • Schlanger, S. O., M. A. Arthur, H. C. Jenkyns, and P. A. Scholle (1987), The Cenomanian-Turonian oceanic anoxic event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion, in Marine Petroleum Source Rocks, edited by J. Brooks, and A. J. Fleet, Spec. Publ. Geol. Soc. London, 26, 371399.
  • Scholle, P. A., and M. A. Arthur (1980), Carbon isotopic fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, AAPG Bull., 64, 6787.
  • Schouten, S., E. C. Hopmans, E. Schefuß, and J. S. Sinninghe Damsté (2002), Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett., 204, 265274.
  • Schouten, S., E. C. Hopmans, A. Forster, Y. van Breugel, M. M. M. Kuypers, and J. S. Sinninghe Damsté (2003), Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids, Geology, 31, 10691072.
  • Schouten, S., E. Hopmans, and J. S. Sinninghe Damsté (2004), The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry, Org. Geochem., 35, 567571.
  • Sellwood, B. W., G. D. Price, and P. J. Valdes (1994), Cooler estimates of Cretaceous temperatures, Nature, 370, 453455.
  • Shackleton, N. J., and J. P. Kennett (1975), Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281, Initial Rep. Deep Sea Drill. Proj., 29, 743755.
  • Simons, D.-J. H., and F. Kenig (2001), Molecular fossil constraints on water column structure of the Cenomanian-Turonian Western Interior Seaway, USA, Palaeogeogr. Palaeoclimatol. Palaeoecol., 169, 129152.
  • Sinton, C. W., and R. A. Duncan (1997), Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian/Turonian boundary, Econ. Geol., 92, 836842.
  • Snow, L. J., R. A. Duncan, and T. J. Bralower (2005), Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2, Paleoceanography, 20, PA3005, doi:10.1029/2004PA001093.
  • Suganuma, Y., and J. G. Ogg (2006), Campanian through Eocene magnetostratigraphy of Sites 1257-1261, ODP Leg 207, Demerara Rise (western equatorial Atlantic) [online], Proc. Ocean Drill. Program Sci. Results, 207, 148. (Available at http://www-odp.tamu.edu/publications/207_SR/102/102.htm).
  • Summerhayes, C. P. (1981), Organic facies of middle Cretaceous black shales in deep North Atlantic, AAPG Bull., 65, 23642380.
  • Thurow, J., and W. Kuhnt (1986), Mid-Cretaceous of the Gibraltar Arch Area, in North Atlantic Palaeoceanography, edited by C. P. Summerhayes, and N. J. Shackleton, Spec. Publ. Geol. Soc. London, 21, 423445.
  • Tsikos, H., H. C. Jenkyns, B. Walsworth-Bell, M. R. Petrizzo, A. Forster, S. Kolonic, E. Erba, I. Premoli Silva, M. Baas, T. Wagner, and J. S. Sinninghe Damsté (2004), Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: Correlation and implications based on three key-locations, J. Geol. Soc. London, 161, 711719.
  • Tucholke, B. E., and P. R. Vogt (1979), Western North Atlantic: Sedimentary evolution and aspects of tectonic history, Initial Rep. Deep Sea Drill. Proj., 43, 791825.
  • Voigt, S., A. S. Gale, and S. Flögel (2004), Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: Temperature evolution and North Atlantic circulation, Paleoceanography, 19, PA4020, doi:10.1029/2004PA001015.
  • Voigt, S., A. S. Gale, and T. Voigt (2006), Sea level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe, an integrated palaeoenvironmental analysis, Cretaceous Res., 27, 836858.
  • Wagner, T., and T. Pletsch (1999), Tectono-sedimentary controls on Cretaceous black shale deposition along the opening Equatorial Atlantic Gateway (ODP Leg 159), Spec. Publ. Geol. Soc. London, 153, 241265.
  • Watkins, D. K., M. J. Cooper, and P. A. Wilson (2005), Calcareous nannoplankton response to late Albian oceanic anoxic event 1d in the western North Atlantic, Paleoceanography, 20, PA2010, doi:10.1029/2004PA001097.
  • Weissert, H., A. Lini, K. B. Föllmi, and O. Kuhn (1998), Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link? Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 189203.
  • Wilson, P. A., and R. D. Norris (2001), Warm tropical ocean surface and global anoxia during the mid-Cretaceous period, Nature, 412, 425429.
  • Wilson, P. A., and B. N. Opdyke (1996), Equatorial sea surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate, Geology, 24, 555558.
  • Wilson, P. A., H. C. Jenkyns, H. Elderfield, and R. L. Larson (1998), The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots, Nature, 392, 889894.
  • Wilson, P. A., R. D. Norris, and M. J. Cooper (2002), Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on the Demerara Rise, Geology, 30, 607610.
  • Wuchter, C., S. Schouten, M. J. L. Coolen, and J. S. Sinninghe Damsté (2004), Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry, Paleoceanography, 19, PA4028, doi:10.1029/2004PA001041.
  • Wuchter, C., S. Schouten, S. G. Wakeham, and J. S. Sinninghe Damsté (2005), Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry, Paleoceanography, 20, PA3013, doi:10.1029/2004PA001110.
  • Zachos, J. C., L. D. Stott, and K. C. Lohmann (1994), Evolution of early Cenozoic marine temperatures, Paleoceanography, 9, 353387.
  • Zeebe, R. E. (2001), Seawater pH and isotopic paleotemperatures of Cretaceous oceans, Palaeogeogr. Palaeoclimatol. Palaeoecol., 170, 4957.