SEARCH

SEARCH BY CITATION

References

  • Abramov, R., and A. J. Majda (2004), Quantifying uncertainty for non-Gaussian ensembles in complex systems, SIAM J. Sci. Stat. Comp., 26, 411447.
  • Abramov, R., A. J. Majda, and R. Kleeman (2005), Information theory and predictability for low-frequency variability, J. Atmos. Sci., 62, 6587.
  • Anderson, J. L., and W. F. Stern (1996), Evaluating the potential predictive utility of ensemble forecasts, J. Clim., 9, 260269.
  • Barnett, T. P., and R. Preisendorfer (1987), Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis, Mon. Weather Rev., 115, 18251850.
  • Chang, P., R. Saravanan, T. DelSole, and F. Wang (2004), Predictability of linear coupled systems. part I: Theoretical analyses, J. Clim., 17, 14741486.
  • Cover, T. M., and J. A. Thomas (1991), Elements of Information Theory, 576 pp., John Wiley, Hoboken, N. J.
  • Darbellay, G. A., and I. Vajda (1999), Estimation of the information by an adaptive partitioning of the observations space, IEEE Trans. Inf. Theory, 45, 13151321.
  • DelSole, T. (2004a), Predictability and information theory. Part I: Measures of predictability, J. Atmos. Sci., 61, 24252440.
  • DelSole, T. (2004b), Stochastic models of quasigeostrophic turbulence, Surv. Geophys., 25(2), 107149.
  • DelSole, T. (2005), Predictability and information theory. part II: Imperfect forecasts, J. Atmos. Sci., 62, 33683381.
  • DelSole, T. (2006), Low-frequency variations of surface temperature in observations and simulations, J. Clim., 19, 44874507.
  • DelSole, T., and P. Chang (2003), Predictable component analysis, canonical correlation analysis, and autoregressive models, J. Atmos. Sci., 60, 409416.
  • DelSole, T., and J. Shukla (2006), Specification of wintertime North American surface temperature, J. Clim., 19, 26912716.
  • DelSole, T., and M. K. Tippett (2007), Predictable components and singular vectors, J. Atmos. Sci., in press.
  • Deque, M. (1988), 10-day predictability of the Northern Hemisphere winter 500-mb height by the ECMWF operational model, Tellus, Ser. A, 40, 2636.
  • Ehrendorfer, M., and J. Tribbia (1997), Optimal prediction of forecast error covariances through singular vectors, J. Atmos. Sci., 54, 286313.
  • Epstein, E. S. (1969), Stochastic dynamic predictions, Tellus, 21, 739759.
  • Farrell, B. F. (1990), Small error dynamics and the predictability of atmospheric flows, J. Atmos. Sci., 47, 24092416.
  • Farrell, B. F., and P. J. Ioannou (1993a), Stochastic dynamics of baroclinic waves, J. Atmos. Sci., 50, 40444057.
  • Farrell, B. F., and P. J. Ioannou (1993b), Stochastic forcing of the linearized Navier-Stokes equations, Phys. Fluids A., 5, 26002609.
  • Farrell, B. F., and P. J. Ioannou (1996a), Generalized stability. part I: Autonomous operators, J. Atmos. Sci., 53, 20252041.
  • Farrell, B. F., and P. J. Ioannou (1996b), Generalized stability. part II: Nonautonomous operators, J. Atmos. Sci., 53, 20412053.
  • Fraser, A. M., and H. L. Swinney (1986), Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 11341140.
  • Fukunaga, K. (1990), An Introduction to Statistical Pattern Recognition, 2nd ed., 591 pp., Academic, San Diego, Calif.
  • Gardiner, C. W. (1990), Handbook of Stochastic Methods, 2nd ed., 442 pp., Springer, New York.
  • Gneiting, T., F. Baladbaoui, and A. E. Raftery (2007), Probabilistic forecasts, calibration and sharpness, J. R. Stat. Soc., Ser. B, 69(2), 243268.
  • Goldman, S. (1953), Information Theory, 385 pp., Prentice-Hall, Upper Saddle River, N. J.
  • Hamill, T. M., and C. Snyder (2000), A hybrid ensemble Kalman filter 3D variational analysis scheme, Mon. Weather Rev., 128, 29052919.
  • Hamill, T. M., J. S. Whitaker, and C. Snyder (2001), Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Weather Rev., 129, 27762790.
  • Hasselmann, K. (1979), On the signal-to-noise problem in atmospheric response studies, in Meteorology of Tropical Oceans, edited by D. B. Shawn, pp. 251259, R. Meteorol. Soc., London.
  • Hasselmann, K. (1993), Optimal fingerprints for the detection of time-dependent climate change, J. Clim., 6, 19571971.
  • Hasselmann, K. (1997), Multi-pattern fingerprint method for detection and attribution of climate change, Clim. Dyn., 13, 601611.
  • Hastie, T., R. Tibshirani, and J. Friedman (2001), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 533 pp., Springer, New York.
  • Houtekamer, P. (1995), The construction of optimal perturbations, Mon. Weather Rev., 123, 28882898.
  • Houtekamer, P. L., and H. L. Mitchell (2001), A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 123137.
  • Ioannou, P. J. (1995), Nonnormality increases variance, J. Atmos. Sci., 52, 11551158.
  • Jaynes, E. T. (2003), Probability Theory: The Logic of Science, 758 pp., Cambridge Univ. Press, New York.
  • Jazwinski, A. H. (1970), Stochastic Processes and Filtering Theory, 376 pp., Academic, San Diego, Calif.
  • Johnson, R. A., and D. W. Wichern (1982), Applied Multivariate Statistical Analysis, 594 pp., Prentice-Hall, Upper Saddle River, N. J.
  • Jolliffe, I. T., and D. B. Stephenson (2003), Forecast Verification: A Practitioner's Guide in Atmospheric Science, 240 pp., John Wiley, Hoboken, N. J.
  • Kalnay, E. (2003), Atmospheric Modeling, Data Assimilation and Predictability, 341 pp., Cambridge Univ. Press, New York.
  • Kelly, J. (1956), A new interpretation of information rate, Bell Syst. Tech. J., 35, 917926.
  • Kleeman, R. (2002), Measuring dynamical prediction utility using relative entropy, J. Atmos. Sci., 59, 20572072.
  • Kleeman, R., and A. M. Moore (1999), A new method for determining the reliability of dynamical ENSO predictions, Mon. Weather Rev., 127, 694705.
  • Kraskov, A., H. Stogbauer, and P. Grassberger (2004), Estimating mutual information, Phys. Rev. E, 69, doi:10.1103/PhysRevE.69.066138.
  • Kullback, S. (1959), Information Theory and Statistics, 399 pp., John Wiley, Hoboken, N. J.
  • Leith, C. E. (1974), Theoretical skill of Monte Carlo forecasts, Mon. Weather Rev., 102, 409418.
  • Leung, L.-Y., and G. R. North (1990), Information theory and climate prediction, J. Clim., 3, 514.
  • Lorenz, E. N. (1963), Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130141.
  • Lorenz, E. N. (1965), A study of the predictability of a 28-variable atmospheric model, Tellus, 17, 321333.
  • Lorenz, E. N. (1969), The predictability of a flow which possesses many scales of motion, Tellus, 21, 289307.
  • Majda, A., R. Kleeman, and D. Cai (2002), A framework for predictability through relative entropy, Methods Appl. Anal., 9, 425444.
  • Marcus, M., and H. Minc (1992), A Survey of Matrix Theory and Matrix Inequalities, 180 pp., Dover, Mineola, N. Y.
  • Mardia, K. V., J. T. Kent, and J. M. Bibby (1979), Multivariate Analysis, 521 pp., Academic, San Diego, Calif.
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis (1996), The ECMWF ensemble prediction system: Methodology and validation, Q. J. R. Meteorol. Soc., 122, 73119.
  • Noble, B., and J. W. Daniel (1988), Applied Linear Algebra, 3rd ed., 521 pp., Prentice-Hall, Upper Saddle River, N. J.
  • Palmer, T. N. (1995), Predictability of the atmosphere and ocean: From days to decades, NATO ASI Ser., Ser. I, 44, 83141.
  • Palmer, T. N., and R. Hagedorn (2006), Predictability of Weather and Climate, 702 pp., Cambridge Univ. Press, New York.
  • Penland, C., and P. D. Sardeshmukh (1995), The optimal growth of tropical sea surface temperature anomalies, J. Clim., 8, 19992024.
  • Renwick, J. A., and J. M. Wallace (1995), Predictable anomaly patterns and the forecast skill of Norther Hemisphere wintertime 500-mb height fields, Mon. Weather Rev., 123, 21142131.
  • Reza, F. M. (1961), An Introduction to Information Theory, 496 pp., McGraw-Hill, New York.
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland (2000), Changes of probability associated with El Niño, J. Clim., 13, 42684286.
  • Schneider, T., and S. M. Griffies (1999), A conceptual framework for predictability studies, J. Clim., 12, 31333155.
  • Schneider, T., and I. Held (2001), Discriminants of twentieth-century changes in Earth surface temperatures, J. Clim., 14, 249254.
  • Schreiber, T. (2000), Measuring information transfer, Phys. Rev. Lett., 85, 461464.
  • Shannon, C. E. (1948), A mathematical theory of communication, Bell Syst. Tech. J., 27, 623656, 379–423.
  • Shukla, J. (1981a), Dynamical predictability of monthly means, J. Atmos. Sci., 38, 25472572.
  • Shukla, J. (1981b), Predictability of the tropical atmosphere, NASA Tech. Memo., 83829.
  • Shukla, J., and J. L. Kinter III (2006), Predictability of seasonal climate variations: A pedagogical view, in Predictability of Weather and Climate, edited by T. N. Palmer, and R. Hagedorn, 702 pp., Cambridge Univ. Press, New York.
  • Simmons, A. J., and A. Hollingsworth (2002), Some aspects of the improvement in skill of numerical weather prediction, Q. J. R. Meteorol. Soc., 128, 647677.
  • Smith, L. A. (2003), Predictability past predictability present, in Seminar on Predictability of Weather and Climate, 9–13 September 2002, pp. 219242, Eur. Cent. for Medium-Range Weather Forecasts, Reading, U. K.
  • Stephenson, D. B. (1997), Correlation of spatial climate/weather maps and the advantages of using the Mahalanobis metric in predictions, Tellus, Ser. A, 49, 513527.
  • Tippett, M. K. (2006), Filtering of GCM simulated Sahel rainfall, Geophys. Res. Lett., 33, L01804, doi:10.1029/2005GL024923.
  • Tippett, M. K., and P. Chang (2003), Some theoretical considerations on predictability of linear stochastic dynamics, Tellus, Ser. A, 55, 148157.
  • Vastano, J. A., and H. L. Swinney (1988), Information transport in spatiotemporal systems, Phys. Rev. Lett., 60, 17731776.
  • Venzke, S., M. R. Allen, R. T. Sutton, and D. P. Rowell (1999), The atmospheric response over the North Atlantic to decadal changes in sea surface temperature, J. Clim., 12, 25622584.
  • von Storch, H., and F. Zwiers (1999), Statistical Analysis in Climate Research, 528 pp., Cambridge Univ. Press, New York.
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes (2005), Fundamental challenge in simulation and prediction of summer monsoon rainfall, Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.
  • Wang, M. C., and G. E. Uhlenbeck (1945), On the theory of the Brownian motion II, Rev. Mod. Phys., 17, 323342.
  • Weiss, J. B. (2003), Coordinate invariance in stochastic dynamical systems, Tellus, Ser. A, 55, 208218.
  • Wilks, D. S. (1995), Statistical Methods in the Atmospheric Sciences, 467 pp., Academic, San Diego, Calif.
  • Wu, R., B. P. Kirtman, and K. Pegion (2006), Local air-sea relationship in observations and model simulations, J. Clim., 19, 49144932.
  • Zucchini, W. (2000), An introduction to model selection, J. Math. Psychol., 44, 4161.