SEARCH

SEARCH BY CITATION

References

  • Ainsworth, E.-A., and S.-P. Long (2005), What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165(2), 351371.
  • Amundson, R. G., R. R. Evett, A. H. Jahren, and J. Bartolome (1997), Stable carbon isotope composition of Poaceae pollen and its potential in paleovegetational reconstructions, Rev. Palaeobot. Palynol., 99(1), 1724.
  • Arens, N. C., and A. H. Jahren (2000), Carbon isotope excursion in atmospheric CO2 at the Cretaceous-Tertiary boundary: Evidence from terrestrial sediments, Palaios, 15, 314322.
  • Arens, N. C., and A. H. Jahren (2002), Chemostratigraphic correlation of four fossil-bearing sections in southwestern North Dakota, in The Hell Creek Formation and the Cretaceous-Tertiary Boundary in the Northern Great Plains: An Integrated Record of the End of the Cretaceous, Spec. Pap. Geol. Soc. Am., 361, 7593.
  • Arens, N. C., A. H. Jahren, and R. Amundson (2000), Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology, 26, 137164.
  • Bazzaz, F. A. (1996), Plants in Changing Environments, 320 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Bazzaz, F. A., and K. Garbutt (1988), The responses of annuals in competitive neighbourhoods: Effects of elevated CO2, Ecology, 69, 937946.
  • Bazzaz, F. A., and S. L. Miao (1993), Successional status, seed size, and responses of tree saplings to CO2, light, and nutrients, Ecology, 74, 104112.
  • Bazzaz, F. A., and W. E. Williams (1991), Atmospheric CO2 concentrations within a mixed forest: Implications for seedling growth, Ecology, 72, 1216.
  • Beerling, D. J., and D. L. Royer (2002), Fossil plants as indicators of the Phanerozoic global carbon cycle, Annu. Rev. Earth Planet. Sci., 30, 527556.
  • Beerling, D. J., and F. I. Woodward (1995), Leaf stable carbon isotope composition records increased water-use efficiency of C3 plants in response to atmospheric CO2 enrichment, Funct. Ecol., 9, 394401.
  • Beerling, D. J., J. A. Lake, R. A. Berner, L. J. Hickey, D. W. Taylor, and D. L. Royer (2002), Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere, Geochim. Cosmochim. Acta, 66, 37573767.
  • Berner, R. A. (1993), Weathering and its effect on atmospheric CO2 over Phanerozoic time, Chem. Geol., 107, 373374.
  • Berner, R. A. (1994), GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 294, 5691.
  • Berner, R. A. (1998), The carbon cycle and CO2 over Phanerozoic time: The role of land plants, Philos. Trans. R. Soc. London, Ser. B, 353, 7582.
  • Berner, R. A. (2001), Modeling atmospheric O2 over Phanerozoic time, Geochim. Cosmochim. Acta, 65, 685694.
  • Berner, R. A., and Z. Kothavala (2001), GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301, 182204.
  • Bocherens, H., E. M. Friis, A. Mariotti, and K. R. Pedersen (1993), Carbon isotopic abundances in Mesozoic and Cenozoic fossil plants: Palaeoecological implications, Lethaia, 26, 347358.
  • Bowen, G. J., and D. J. Beerling (2004), An integrated model for soil organic carbon and CO2: Implications for paleosol carbonate pCO2 paleobarometry, Global Biogeochem. Cycles, 18, GB1026, doi:10.1029/2003GB002117.
  • Bralower, T. J., M. A. Arthur, R. M. Leckie, W. V. Sliter, D. J. Allard, and S. O. Shlanger (1994), Timing and paleoceanography of oceanic dysoxia/anoxia in the Late Barremian to Early Aptian (Early Cretaceous), Palaios, 9, 335369.
  • Briggs, D. E. G., R. P. Evershed, and M. J. Lockheart (2000), The biomolecular paleontology of continental fossils, Paleobiology, 26(4), suppl., 169193.
  • Cerling, T. E. (1991), Carbon dioxide in the atmosphere; evidence from Cenozoic and Mesozoic paleosols, Am. J. Sci., 291, 377400.
  • Cerling, T. E. (1992), Use of carbon isotopes in paleosols as an indicator of the P(CO2) of the paleoatmosphere, Global Biogeochem. Cycles, 6(3), 307314.
  • Cerling, T. E., and R. L. Hay (1986), An isotopic study of paleosol carbonates from Olduvai Gorge, Quat. Res., 25(1), 6378.
  • Chaloner, W. G., and J. McElwain (1997), The fossil plant record and global climatic change, Rev. Palaeobot. Palynol., 95(1–4), 7382.
  • Christeller, J. T., W. A. Lang, and J. H. Troughton (1976), Isotope discrimination by ribulose 1, 5-diphosphate carboxylase, Plant Physiol., 57, 580582.
  • Craig, H. (1953), The geochemistry of the stable carbon isotopes, Geochim. Cosmochim. Acta, 3, 5392.
  • Craig, H. (1954), Carbon-13 in plants and the relationship between carbon-13 and carbon-14 variations in nature, J. Geol., 62, 115149.
  • Dawson, T. E., S. Mambelli, A. H. Plamboeck, P. H. Templer, and K. P. Tu (2002), Stable isotopes in plant ecology, Annu. Rev. Ecol. Syst., 33, 507559.
  • D'Hondt, S., P. Donaghay, J. C. Zachos, D. Luttenberg, and M. Lindinger (1998), Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction, Science, 282, 276279.
  • Dickens, G. R., M. M. Castillo, and J. C. G. Walker (1997), A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate, Geology, 25(3), 259262.
  • Ehleringer, J. R., and T. E. Cerling (1995), Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants, Tree Physiol., 15, 105111.
  • Ekart, D. D., T. E. Cerling, I. P. Montañez, and N. J. Tabor (1999), A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide, Am. J. Sci., 299, 805827.
  • Ellsworth, D., P. Reich, E. Naumburg, G. Koch, M. Kubiske, and S. Smith (2004), Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert, Global Change Biol., 10, 21212138.
  • Farquhar, G. D. (1979), Models describing the kinetics of ribulose biphosphate carboxylase-oxygenase, Arch. Biochem. Biophys., 193, 456468.
  • Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick (1989), Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant. Physiol. Plant Mol. Biol., 40, 503537.
  • Greenwood, D. R., M. J. Scarr, and D. C. Christophel (2003), Leaf stomatal frequency in the Australian tropical rainforest tree Neolitsea dealbata (Lauraceae) as a proxy measure of atmospheric pCO2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 196, 375393.
  • Gröcke, D. R. (2002), The carbon isotope composition of ancient CO2 based on higher-plant organic matter, Philos. Trans. R. Soc. London, Ser. A, 360, 633658.
  • Gröcke, D. R., S. P. Hesselbo, and H. C. Jenkyns (1999), Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change, Geology, 27(2), 155158.
  • Guy, R. D., and D. M. Reid (1986), Photosynthesis and the influence of CO2-enrichment on δ13C values in a C3 halophyte, Plant Cell Environ., 9, 6572.
  • Guy, R. D., D. M. Reid, and H. R. Krouse (1980), Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions, Oecologia, 44, 241247.
  • Guy, R. D., P. G. Warne, and D. M. Reid (1989), Stable carbon isotope ratio and an index of water-use efficiency of C3 halophytes—Possible relationship to strategies of osmotic adjustment, in Stable Isotopes in Ecological Research, vol. 68, edited by P. W. Rundel, J. R. Ehleringer, and K. A. Nagy, pp. 5575, Springer, New York.
  • Halling, B. P., and G. R. Peters (1987), Influence of chloroplast development on activation of the diphenyl ether herbicide acifluorfen-methyl, Plant Physiol., 84, 11141120.
  • Hasegawa, T., L. M. Pratt, H. Maeda, Y. Shigeta, T. Okamoto, T. Kase, and K. Uemura (2003), Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: A proxy for the isotopic composition of paleoatmospheric CO2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 189, 97115.
  • Hayes, J. M., B. N. Popp, R. Takigiku, and M. W. Johnson (1989), An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation, Geochim. Cosmochim. Acta, 53, 29612972.
  • Herrick, J. D., and R. B. Thomas (2001), No photosynthetic down-regulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO2 enrichment at the Duke Forest FACE experiment, Plant Cell Environ., 24, 5364.
  • Hesselbo, S. P., B. H. S. Morgans, J. C. McElwain, P. M. Rees, S. A. Robinson, and C. E. Ross (2003), Carbon-cycle perturbation in the Middle Jurassic and accompanying changes in the terrestrial paleoenvironment, J. Geol., 111(3), 259276.
  • Holtum, J. A. M., M. H. O'Leary, and C. B. Osmond (1983), Effect of varying CO2 partial pressure on photosynthesis on the carbon isotope composition of carbon-4 of malate from the Crassulean acid metabolism plant Kalanchoë daigremontiana Hamet et Perr, Plant Physiol., 71, 602609.
  • Hungate, B. A., M. Reichstein, P. Dijkstra, D. Johnson, G. Hymus, J. D. Tenhunen, R. Hinkle, and B. G. Drakes (2002), Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment, Global Change Biol., 8, 110.
  • Idso, S. B., and B. A. Kimball (1989), Growth response of carrot and radish to atmospheric CO2 enrichment, Environ. Explor. Bot., 29(2), 135139.
  • Igamberdiev, A. U., A. A. Ivlev, N. V. Bykova, C. N. Threlkeld, P. J. Lea, and P. Gardeström (2001), Decarboxylation of glycine contributes to carbon isotope fractionation in photosynthetic organisms, Photosynth. Res., 67, 177184.
  • Isebrands, J. G., R. E. Dickson, J. Rebbeck, and D. F. Karnosky (2000), Interacting effects of multiple stresses on growth and physiological processes in northern forest trees, in Responses of Northern U. S. Forests to Environmental Change, edited by R. A. Mickler, R. A. Birdsey, and J. Hom, pp. 149180, Springer, New York.
  • Jahren, A. H. (2002), The biogeochemical consequences of the mid-Cretaceous superplume, J. Geodyn., 34(2), 177191.
  • Jahren, A. H. (2004), The carbon stable isotope composition of pollen, Rev. Palaeobot. Palynol., 132(3–4), 291313.
  • Jahren, A. H., N. C. Arens, G. Sarmiento, J. Guerrero, and R. Amundson (2001), Terrestrial record of methane hydrate dissociation in the Early Cretaceous, Geology, 29(2), 159162.
  • Jahren, A. H., B. A. LePage, and S. P. Werts (2004a), Methanogenesis in Eocene Arctic soils inferred from δ13C of tree fossil carbonates, Palaeogeogr. Palaeoclimatol. Palaeoecol., 214, 347358.
  • Jahren, A. H., G. Petersen, and O. Seberg (2004b), Plant DNA: A new substrate for carbon stable isotope analysis and a potential paleoenvironmental indicator, Geology, 32(3), 241244.
  • Jahren, A. H., C. P. Conrad, N. C. Arens, G. Mora, and C. R. Lithgow-Bertelloni (2005), A plate tectonic mechanism for methane hydrate release along subduction zones, Earth Planet. Sci. Lett., 236(3–4), 691704.
  • Jahren, A. H., K. B. Kelm, B. Wendland, G. Petersen, and O. Seberg (2006), Carbon stable isotope composition of DNA isolated from an incipient paleosol, Geology, 34(5), 381384.
  • Karnosky, D. F. (2003), Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: Knowledge gaps, Environ. Int., 29, 161169.
  • Keeling, C. D., A. Carter, and W. G. Mook (1984), Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric CO2: 2. Results from oceanographic cruises in the tropical Pacific Ocean, J. Geophys. Res., 89(3), 46154628.
  • Knapp, A. K., E. P. Hamerlynck, J. M. Ham, and C. E. Owensby (1996), Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form, Plant Ecol., 125(1), 3141.
  • Körner, C. (2000), Biosphere responses to CO2 enrichment, Ecol. Appl., 10, 15901619.
  • Körner, C. (2004), Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon, Philos. Trans. R. Soc. London, Ser. B, 369, 493498.
  • Körner, C., G. D. Farquhar, and C. S. Wong (1991), Carbon isotope discrimination by plants follows latitudinal and altitudinal trends, Oecologia, 88, 3040.
  • Krull, E. S., and G. J. Retallack (2000), δ13C depth profiles from paleosols across the Permian-Triassic boundary: Evidence for methane release, Geol. Soc. Am. Bull., 112(9), 14591472.
  • Loader, N. J., and D. L. Hemming (2000), Preparation of pollen for stable carbon isotope analyses, Chem. Geol., 165, 339344.
  • Loader, N. J., and D. L. Hemming (2001), Spatial variation in pollen δ13C correlates with temperature and seasonal development timing, Holocene, 11(5), 587592.
  • Ludvigson, G. A., L. A. González, R. A. Metzger, B. J. Witzke, B. L. Brenner, A. P. Murillo, and T. S. White (1998), Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology, Geology, 26(11), 10391042.
  • Madhavan, S., I. Treichel, and M. H. O'Leary (1991), Effects of relative humidity on carbon isotope fractionation in plants, Bot. Acta, 104, 292294.
  • Mauney, J. R., B. A. Kimball, P. J. Pinter, R. L. Lamorte, K. F. Lewin, J. Nagy, and G. R. Hendrey (1994), Growth and yield of cotton in response to a free-air carbon dioxide enrichment (FACE) environment, Agric. For. Meteorol., 70, 4967.
  • McElwain, J. C., D. J. Beerling, and F. I. Woodward (1999), Fossil plants and global warming at the Triassic-Jurassic boundary, Science, 285, 13861390.
  • Mora, C. I., S. G. Driese, and P. G. Seager (1991), Carbon dioxide in the Paleozoic atmosphere: Evidence from carbon-isotope compositions of pedogenic carbonate, Geology, 19(10), 10171020.
  • Mora, C. I., S. G. Driese, and L. A. Colarusso (1996), Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter, Science, 271, 11051107.
  • Nordt, L., S. Atchley, and S. I. Dworkin (2002), Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary, Geology, 30(8), 703706.
  • Pancost, R. D., and C. S. Boot (2004), The paleoclimatic utility of terrestrial biomarkers in marine sediments, Mar. Chem., 92, 239261.
  • Pataki, D. E., R. Oren, and D. T. Tissue (1998), Elevated carbon dioxide does not affect stomatal conductance of Pinus taeda L. Oecologia, 117, 4752.
  • Pinter, P. J., B. A. Kimball, R. L. Garcia, G. W. Wall, D. J. Hunsaker, and R. L. Lamorte (1996), Free-air CO2 enrichment: Responses of cotton and wheat crops, in Carbon Dioxide and Terrestrial Ecosystems, edited by G. W. Koch, and H. A. Mooney, pp. 215249, Academic, San Diego, Calif.
  • Polley, H. W., H. B. Johnson, B. D. Marino, and H. S. Mayeux (1993), Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations, Nature, 361, 6164.
  • Poole, I., F. Braadbaart, J. J. Boon, and P. F. van Bergen (2002), Stable carbon isotope changes during artificial charring of propagules, Org. Geochem., 33, 16751681.
  • Poole, I., P. F. van Bergen, J. Kool, S. Schouten, and D. J. Cantrill (2004), Molecular isotopic heterogeneity of fossil organic matter: Implications for δ13Cbiomass and δ13Cpalaeoatmosphere proxies, Org. Geochem., 35, 12611274.
  • Rask, H. M., and J. J. Schoenau (1993), 13C natural abundance variations in carbonates and organic carbon from boreal forest wetlands, Biogeochemistry, 22, 2335.
  • Raven, J. A., and J. J. Sprent (1989), Phototrophy, diazotrophy and palaeoatmospheres: Biological catalysts and H, C, N and O biological cycles, J. Geol. Soc. London, 146, 161170.
  • Reilly, J. (1996), Agriculture in a changing climate: Impacts and adaptation, in Climate Change 1995: Impacts, Adaptations, and Mitigation of Climate Change, edited by R. T. Watson, M. C. Zinyowera, and R. H. Moss, pp. 429467, Cambridge Univ. Press, Cambridge, U. K.
  • Retallack, G. (2001), A 300-million year old record of atmospheric carbon dioxide from fossil plant cuticles, Nature, 411, 287290.
  • Rogers, A., and D. Ellsworth (2002), Photosynthetic acclimation of Pinus taeda (loblolly pine to long-term growth in elevated pCO2 (FACE), Plant Cell Environ., 25, 851858.
  • Royer, D. L., R. A. Berner, and D. J. Beerling (2001a), Phanerozoic atmospheric CO2 change: Evaluating geochemical and paleobiological approaches, Earth Sci. Rev., 54(4), 349392.
  • Royer, D. L., S. L. Wing, D. J. Beerling, D. W. Jolley, P. L. Koch, L. J. Hickey, and R. A. Berner (2001b), Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary, Science, 292, 23102313.
  • Schlesinger, W. H., et al. (2006), The Duke Forest FACE experiment: CO2 enrichment of a loblolly pine forest, in Managed Ecosystems and CO2Case Studies, Processes and Perspectives, vol. 187, edited by J. Nösberger et al., Springer, Berlin.
  • Schmidt, H. L., F. J. Winkler, E. Latsko, and E. Wirth (1978), 13C-kinetic isotope effects in photosynthetic carboxylation reactions and δ13C values of plant material, Isr. J. Chem., 17, 223224.
  • Soil Survey Staff of the Soil Conservation Service (1999), Keys to Soil Taxonomy, Pocahontas, Inc., Blacksburg, Va.
  • Sternberg, L. S. L., and D. L. DeAngelis (2002), The carbon isotope composition of ambient CO2 and recycling: A matrix simulation model, Ecol. Model., 154, 179192.
  • Strauss, H., and W. Peters-Kottig (2003), The Paleozoic to Mesozoic carbon cycle revisited: The carbon isotopic composition of terrestrial organic matter, Geochem. Geophys. Geosyst., 4(10), 1083, doi:10.1029/2003GC000555.
  • Sundquist, E. T. (1985), Geological perspective on CO2 and the C cycle, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archaean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 559, AGU, Washington, D. C.
  • Tabor, N. J., C. J. Yapp, and I. P. Montañez (2004), Goethite, calcite, and organic matter from Permian and Triassic soils: Carbon isotopes and CO2 concentrations, Geochim. Cosmochim. Acta, 68, 15031517.
  • Toft, N. L., J. E. Anderson, and R. S. Nowak (1989), Water use efficiency and carbon isotope composition of plants in a cold desert environment, Oecologia, 80, 1118.
  • Tu, T. T. N., W. M. Kürschner, S. Schouten, and P. F. Van Bergen (2004), Leaf carbon isotope composition of fossil and extant oaks grown under differing atmospheric CO2 levels, Palaeogeogr. Palaeoclimatol. Palaeoecol., 212, 199213.
  • van Bergen, P. F., and I. Poole (2002), Stable carbon isotopes of wood: A clue to palaeoclimate? Palaeogeogr. Palaeoclimatol. Palaeoecol., 182, 3145.
  • van Bergen, P. F., M. E. Collinson, D. E. G. Briggs, J. W. de Leeuw, A. C. Scott, R. P. Evershed, and P. Finch (1995), Resistant biomacromolecules in the fossil record, Acta Bot. Neerl., 44, 319342.
  • Vu, J.-C.-V. (2005), Acclimation of peanut (Arachis hypogaea L.) leaf photosynthesis to elevated growth CO2 and temperature, Environ. Exp. Bot., 53(1), 8595.
  • Ward, J. K., and B. R. Strain (1999), Elevated CO2 studies: Past, present and future, Tree Physiol., 19, 211220.
  • Weissert, H. (1989), C-isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the Early Cretaceous, Surv. Geophys., 10, 161.
  • Wong, W. W., C. R. Benedict, and R. J. Kohel (1979), Enzymic fractionation of the stable carbon isotopes of carbon dioxide by ribulose 1, 5-diphosphate carboxylase, Plant Physiol., 63, 852856.
  • Yapp, C. J. (2004), Fe (CO3)OH in goethite from a mid-latitude North American Oxisol: Estimate of atmospheric CO2 concentration in the Early Eocene “climatic optimum,”, Geochim. Cosmochim. Acta, 68, 935947.
  • Yapp, C. J., and H. Poths (1996), Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure, Earth Planet. Sci. Lett., 137(1–4), 7182.