A new solution expressed in terms of UTD coefficients for the multiple diffraction of spherical waves by a series of buildings

Authors


Abstract

[1] A new formulation expressed in terms of Uniform Theory of Diffraction (UTD) coefficients for the prediction of the multiple diffraction caused by a series of buildings modeled as wedges, considering spherical-wave incidence, is presented. The solution, which has a certain heuristic nature, is validated with numerical results from technical literature and the particular cases of diffraction by buildings modeled as absorbing knife edges, as well as the one in which the mentioned buildings are replaced by flat-roofed parallel rows of blocks (building rows in cross sections considered to be rectangular in shape) are also analyzed. The computing time is reduced over existing formulations, especially when the number of buildings is large, and the results can be applied in the development of theoretical models, in order to predict a more realistic path loss in urban environments when multiple-building diffraction has to be considered.

Ancillary