SEARCH

SEARCH BY CITATION

References

  • Allen, J. R. L. (2000), Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and southern North Sea coasts of Europe, Quat. Sci. Rev., 19, 11551231, doi:10.1016/SO277-3791(99)00034-7.
  • Beechie, T. J., B. D. Collins, and G. R. Pess (2001), Holocene and recent geomorphic processes, land use, and salmonid habitat in two North Puget Sound river basins, in Geomorphic Processes and Riverine Habitat, Water Sci. Appl., vol. 4, edited by J. M. Dorava et al., pp. 3754, AGU, Washington, D. C.
  • Boon, J. D. (1975), Tidal discharge asymmetry in a saltmarsh drainage system, Limnol. Oceanogr., 20, 7180.
  • Bull, W. B. (1975), Allometric change of landforms, Geol. Soc. Am. Bull., 86, 14891498.
  • Church, M., and D. M. Mark (1980), On size and scale in geomorphology, Prog. Phys. Geogr., 4, 342390.
  • Coats, R. N., P. B. Williams, C. K. Cuffe, J. B. Zedler, D. Reed, S. M. Waltry, and J. S. Noller (1995), Design guidelines for tidal channels in coastal wetlands, Rep. 934,U. S. Army Corps of Eng., Waterw. Exp. Stn., Vicksburg, Miss.
  • Collins, B. D., and D. R. Montgomery (2001), Importance of archival and process studies to characterizing pre-settlement riverine geomorphic processes and habitat in the Puget Lowland, in Geomorphic Processes and Riverine Habitat, Water Sci. Appl., vol. 4, edited by J. M. Dorava et al., pp. 227243, AGU, Washington, D. C.
  • Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe (1979), Classification of Wetlands and Deepwater Habitats of the United States, ,79 pp., Fish and Wildlife Serv., U. S. Dep. of Inter., Washington, D. C.
  • Davidson-Arnott, R. G. D., D. van Proosdij, J. Ollerhead, and L. Schostak (2002), Hydrodynamics and sedimentation in salt marshes: Examples from a macrotidal marsh, Bay of Fundy, Geomorphology, 48, 209231.
  • Dragovich, J. D., M. L. Trost, D. K. Norman, G. Anderson, J. Cass, L. A. Gilbertson, and D. T. McKay Jr. (2000), Geologic map of the Anacortes South and La Conner 7.5-minute quadrangles, Skagit and Island counties, Washington, Wash. State Dep. of Nat. Resour., Olympia.
  • Fagherazzi, S., A. Bortoluzzi, W. E. Dietrich, A. Adami, S. Lanzoni, M. Marani, and A. Rinaldo (1999), Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps, Water Resour. Res., 35, 38913904.
  • Feola, A., E. Belluco, A. D'Alpaos, S. Lanzoni, M. Marani, and A. Rinaldo (2005), A geomorphic study of lagoonal landforms, Water Resour. Res., 41, W06019, doi:10.1029/2004WR003811.
  • Fish and Wildlife Service (1999), Endangered and threatened wildlife and plants: Listing of nine evolutionarily significant units of Chinook salmon, chum salmon, sockeye salmon, and steelhead, U. S. Fed. Regist., 64, 41,83541,839.
  • French, J. R., and T. Spencer (1993), Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, UK, Mar. Geol., 110, 315331.
  • French, J. R., and D. R. Stoddart (1992), Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange, Earth Surf. Processes Landforms, 17, 235252.
  • Halpin, P. M. (1997), Habitat use patterns of the mummichog, Fundulus heteroclitus, in New England. I. Intramarsh variation, Estuaries, 20, 618625.
  • Hood, W. G. (2002a), Landscape allometry: From tidal channel hydraulic geometry to benthic ecology, Can. J. Fish. Aquat. Sci., 59, 14181427.
  • Hood, W. G. (2002b), Application of landscape allometry to restoration of tidal channels, Restoration Ecol., 10, 213222.
  • Hood, W. G. (2004), Indirect environmental effects of dikes on estuarine tidal channels: Thinking outside of the dike for habitat restoration and monitoring, Estuaries, 27, 273282.
  • Hood, W. G. (2006), A conceptual model of depositional, rather than erosional, tidal channel development in the rapidly prograding Skagit River Delta (Washington, USA), Earth Surf. Processes Landforms, 31, 18241838.
  • Hume, T. M. (1991), Empirical stability relationships for estuarine waterways and equations for stable channel design, J. Coastal Res., 7, 10971111.
  • Leonard, L. A., and M. E. Luther (1995), Flow hydrodynamics in tidal marsh canopies, Limnol. Oceanogr., 40, 14741484.
  • Levy, D. A., and T. G. Northcote (1982), Juvenile salmon residency in a marsh area of the Fraser River estuary, Can. J. Fish. Aquat. Sci., 39, 270276.
  • Mandelbrot, B. (1983), The Fractal Geometry of Nature, ,W. H. Freeman, New York.
  • Marani, M., E. Belluco, A. D'Alpaos, A. Defina, S. Lanzoni, and A. Rinaldo (2003), On the drainage density of tidal networks, Water Resour. Res., 39(2), 1040, doi:10.1029/2001WR001051.
  • Miller, J. L., and L. R. Gardner (1981), Sheet flow in a salt-marsh basin, North Inlet, South Carolina, Estuaries, 4, 234237.
  • Milne, B. T. (1991), Lessons from applying fractal models to landscape patterns, in Quantitative Methods in Landscape Ecology, , edited by M. G. Turner, and R. H. Gardner, pp. 199235, Springer, New York.
  • Myrick, R. M., and L. B. Leopold (1963), Hydraulic geometry of a small tidal estuary, U. S. Geol. Surv. Prof. Pap., 411-B.
  • Novakowski, K. I., R. Torres, L. R. Gardner, and G. Voulgaris (2004), Geomorphic analysis of tidal creek networks, Water Resour. Res., 40, W05401, doi:10.1029/2003WR002722.
  • Odum, W. E. (1984), Dual-gradient concept of detritus transport and processing in estuaries, Bull. Mar. Sci., 35, 510521.
  • Ouchi, S., and M. Matsushita (1992), Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis, Geomorphology, 5, 115130.
  • Pethick, J. S. (1992), Saltmarsh geomorphology, in Saltmarshes: Morphodynamics, Conservation, and Engineering Significance, edited by J. R. L. Allen, and K. Pye, pp. 4162, Cambridge Univ. Press, New York.
  • Renger, E., and H.-W. Partenscky (1974), Stabilitätsverhalten von Watteinzugsgebieten, Kueste Arch. Forschung Tech. Nord. Ostsee, 25, 7386.
  • Rinaldo, A., S. Fagherazzi, S. Lanzoni, and M. Marani (1999), Tidal networks 2: Watershed delineation and comparative network morphology, Water Resour. Res., 35, 39053917.
  • Rodriguez-Iturbe, I., and A. Rinaldo (1997), Fractal River Basins: Chance and Self-Organization, Cambridge Univ. Press, New York.
  • Rozas, L. P., C. C. McIvor, and W. E. Odum (1988), Intertidal rivulets and creekbanks: Corridors between tidal creeks and marshes, Mar. Ecol. Prog. Ser., 47, 303307.
  • Sanderson, E. W., S. L. Ustin, and T. C. Foin (2000), The influence of tidal channels on the distribution of salt marsh plant species in Petaluma Marsh, CA, USA, Plant Ecol., 146, 2941.
  • Simenstad, C. A. (1983), The ecology of estuarine channels of the Pacific northwest: A community profile, Rep. FWS/OBS 83/05,U. S. Fish and Wildlife Serv., Washington, D. C.
  • Sokal, R. R., and F. J. Rohlf (1995), Biometry, W. H. Freeman, New York.
  • Temmerman, S., T. J. Bouma, G. Govers, and D. Lauwaet (2005), Flow paths of water and sediment in a tidal marsh: Relations with marsh developmental stage and tidal inundation height, Estuaries, 28, 338352.
  • Williams, G. D., and J. B. Zedler (1999), Fish assemblage composition in constructed and natural tidal marshes of San Diego Bay: Relative influence of channel morphology and restoration history, Estuaries, 72, 702716.
  • Williams, P. B., M. K. Orr, and N. J. Garrity (2002), Hydraulic geometry: A geomorphic design tool for tidal marsh channel evolution in wetland restoration projects, Restoration Ecol., 10, 577590.
  • Woldenberg, M. J. (1966), Horton's laws justified in terms of allometric growth and steady state in open systems, Geol. Soc. Am. Bull., 77, 431434.
  • Zar, J. H. (1984), Biostatistical Analysis, ,Prentice-Hall, Upper Saddle River, N. J.
  • Zeff, M. L. (1999), Salt marsh tidal channel morphometry: Applications for wetland creation and restoration, Restoration Ecol., 7, 205211.