SEARCH

SEARCH BY CITATION

References

  • Aeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer (1999), Interpretation of dissolved atmospheric noble gases in natural waters, Water Resour. Res., 35, 27792792.
  • Aeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer (2000), Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air, Nature, 405, 10401044.
  • Andrews, J. N., W. Balderer, A. H. Bath, H. B. Clausen, G. V. Evans, T. Florkowski, J. E. Goldbrunner, M. Ivanovich, H. H. Loosli, and H. Zojer (1984), Environmental isotope studies in two aquifer systems: A comparison of groundwater dating methods, in Isotope Hydrology 1983, pp. 535577, Int. At. Energy Agency, Vienna.
  • Andrews, J. N., S. N. Davis, J. Fabryka-Martin, J.-C. Fontes, B. E. Lehmann, H. H. Loosli, J.-L. Michelot, H. Moser, B. Smith, and M. Wolf (1989), The in situ production of radioisotopes in rock matrices with particular reference to the Stripa Granite, Geochim. Cosmochim. Acta, 53, 18031815.
  • Bariteau, A. (1996), Modélisation géochimique d'un aquifère: La nappe de l'Oligocène en Beauce et l'altération des Sables de Fontainebleau, thesis, Ecole des Mines de Paris, Paris.
  • Barraclough, P. B., and P. B. Tinker (1982), The determination of ionic diffusion coefficients in field soils. II. Diffusion of bromide ions in undisturbed soil cores, J. Soil Sci., 33, 1324.
  • Bath, A. H., W. M. Edmunds, and J. N. Andrews (1978), Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom, in Isotope Hydrology, pp. 545568, Int. At. Energy Agency, Vienna.
  • Bergonzini, L. (2000), Caractérisation géochimique de la nappe des Sables de Fontainebleau, paper presented at 18th Réunion des Sciences de la Terre, Soc. Géol. de Fr., Paris.
  • Beyerle, U., R. Purtschert, W. Aeschbach-Hertig, D. M. Imboden, H. H. Loosli, R. Wieler, and R. Kipfer (1998), Climate and groundwater recharge during the last glaciation in an ice-covered region, Science, 282, 731734.
  • Beyerle, U., W. Aeschbach-Hertig, D. M. Imboden, H. Baur, T. Graf, and R. Kipfer (2000), A mass spectrometric system for the analysis of noble gases and tritium from water samples, Environ. Sci. Technol., 34, 20422050.
  • Busenberg, E., and L. N. Plummer (1992), Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: The alluvium and terrace system of central Oklahoma, Water Resour. Res., 28, 22572283.
  • Carrera, J., A. Alcolea, A. Medina, J. Hidalgo, and L. J. Slooten (2005), Inverse problem in hydrogeology, Hydrogeol. J., 13, 206222.
  • Cook, P. G., and D. K. Solomon (1995), Transport of atmospheric trace gases to the water table: Implications for groundwater dating with chlorofluorocarbons and krypton-85, Water Resour. Res., 31, 263270.
  • Coplen, T. B., A. L. Herczeg, and C. Barnes (1999), Isotope engineering—Using stable isotopes of the water molecule to solve practical problems, in Environmental Tracers in Subsurface Hydrology, edited by P. G. Cook, and A. L. Herczeg, pp. 79110, Springer, New York.
  • Corcho Alvarado, J. A., R. Purtschert, F. Barbecot, C. Chabault, J. Rüedi, V. Schneider, W. Aeschbach-Hertig, R. Kipfer, and H. H. Loosli (2004), Tracer transport in the unsaturated zone of the Fontainebleau Sands Aquifer, paper presented at International Workshop on the Application of Isotope Techniques in Hydrological and Environmental Studies, Int. At. Energy Agency, Paris.
  • Fontes, J. C. (1992), Chemical and isotopic constraints on 14C dating of groundwater, in Radiocarbon After Four Decades, edited by R. E. Taylor, A. Long, and R. S. Kra, pp. 242261, Springer, New York.
  • Fontes, J. C., and J. M. Garnier (1979), Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach, Water Resour. Res., 15, 399413.
  • Forster, M., K. Ramm, and P. Maier (1992), Argon-39 dating of groundwater and its limiting conditions, in Isotope Techniques in Water Resource Development 1991, pp. 203214, Int. At. Energy Agency, Vienna.
  • Gaye, C. B., and W. M. Edmunds (1996), Groundwater recharge estimation using chloride, stable isotopes and tritium profiles in the sands of northwestern Senegal, Environ. Geol., 27, 246251.
  • Gillon, M., F. Barbecot, E. Gibert, C. Marlin, and M. Massault (2004), Variability of CO2 composition in 13C within the unsaturated zone and influence on groundwater dating, paper presented at International Workshop on the Application of Isotope Techniques in Hydrological and Environmental Studies, Int. At. Energy Agency, Paris.
  • Kalin, R. M. (1999), Radiocarbon dating of groundwater systems, in Environmental Tracers in SubsurfaceHydrology, edited by P. G. Cook, and A. L. Herczeg, pp. 111144, Springer, New York.
  • Kipfer, R., W. Aeschbach-Hertig, F. Peeters, and M. Stute (2002), Noble gases in lakes and ground waters, in Noble Gases in Geochemistry and Cosmochemistry, Rev. Mineral. Geochem., vol. 47, edited by D. Porcelli, C. Ballentine, and R. Wieler, pp. 615700, Mineral. Soc. of Am., Washington, D. C.
  • Lehmann, B., and H. H. Loosli (1984), Use of noble gas radioisotopes for environmental research, in Resonance Ionization Spectroscopy 1984, Conf. Ser., vol. 71, pp. 219226, Inst. of Phys., Bristol, U. K.
  • Lehmann, B. E., and H. H. Loosli (1991), Isotopes formed by underground production, in Applied Isotope Hydrogeology: A Case Study in Northern Switzerland, edited by F. J. Pearson et al., pp. 239296, Elsevier, New York.
  • Levin, I., and B. Kromer (1997), δ14CO2 records from Schauinsland, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn. (Available at http://cdiac.ornl.gov/trends/co2/cent-scha.htm).
  • Loosli, H. H. (1983), A dating method with 39Ar, Earth Sci. Planet. Lett., 63, 51.
  • Loosli, H. H., and B. E. Lehmann (1989), Transfer of underground produced 37Ar, 39Ar and 40Ar from rock into water, in Water-Rock Interaction WRI-6, pp. 445448, A. A. Balkema, Brookfield, Vt.
  • Loosli, H. H., M. Moeli, H. Oeschger, and U. Schotterer (1986), Ten years low-level counting in the underground laboratory in Bern, Switzerland, Nucl. Instr. Methods Phys. Res., Sect. B, 17, 402405.
  • Loosli, H. H., B. E. Lehmann, and W. Balderer (1989), Argon-39, argon-37 and krypton-85 isotopes in Stripa groundwaters, Geochim. Cosmochim. Acta, 53, 18251829.
  • Loosli, H. H., B. E. Lehmann, and G. Däppen (1991), Dating by radionuclides, in Applied Isotope Hydrogeology: A Case Study in Northern Switzerland, edited by F. J. Pearson et al., pp. 153174, Elsevier, New York.
  • Loosli, H. H., B. E. Lehmann, C. Thalmann, J. N. Andrews, and T. Florkowski (1992), Argon-37 and argon-39: Measured concentrations in groundwater compared with calculated concentrations in rock, in Isotope Techniques in Water Resources Development, pp. 189201, Int. At. Energy Agency, Vienna.
  • Loosli, H. H., B. E. Lehmann, and W. M. Smethie (1999), Noble gas radioisotopes: 37Ar, 85Kr, 39Ar, 81 Kr, in Environmental Tracers in SubsurfaceHydrology, edited by P. G. Cook, and A. L. Herczeg, pp. 379396, Springer, New York.
  • Mazor, E. (1972), Paleotemperatures and other hydrological parameters deduced from noble gases dissolved in groundwaters, Jordan Rift Valley, Israel, Geochim. Cosmochim. Acta, 36, 13211336.
  • Mégnien, C. (1979), Hydrogéologie du centre du Bassin de Paris, Mem. BRGM, 98, 144149.
  • Ménillet, F. (1988), Meulières, argiles à meulières et meuliérisation—Historique évolution des termes et hypothèses génétiques, Bull. Inf. Geol. Bassin Paris, 25(4), 7179.
  • Mercier, R. (1981), Inventaire des ressources aquifères et vulnérabilité des nappes du département des Yvelines, Rapp. 81SGN348IDF, Bur. de Rech. Géol. et Min., Paris.
  • Millington, R. J. (1959), Gas diffusion in porous media, Science, 130, 100102.
  • Mook, W. G. (1980), Carbon-14 in hydrogeological studies, in Handbook of Environmental Isotope Geochemistry, vol. 1, edited by P. Fritz, and J. C. Fontes, pp. 4974, Elsevier, New York.
  • Oeschger, H., A. Gugelman, H. H. Loosi, U. Schotterer, U. Siegenthaler, and W. Wiest (1974), 39Ar dating of groundwater, in Isotope Techniques in Groundwater Hydrology, pp. 179190, Int. At. Energy Agency, Vienna.
  • Pearson, F. J.Jr., W. Balderer, H. H. Loosli, B. E. Lehmann, A. Matter, T. Peters, H. Schmassmann, and A. Gautschi (1991), Applied Isotope Hydrology: A Case Study in Northern Switzerland, 436 pp., Elsevier, New York.
  • Peeters, F., U. Beyerle, W. Aeschbach-Hertig, J. Holocher, M. S. Brennwald, and R. Kipfer (2002a), Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios, Geochim. Cosmochim. Acta, 67, 587600.
  • Peeters, F., W. Aeschbach-Hertig, J. Holocher, and R. Kipfer (2002b), Excess air correction in groundwater dating with He isotopes, Goldschmidt conference, Davos, Switzerland, Geochim. Cosmochim. Acta, 67, A587.
  • Plummer, L. N., and E. Busenberg (1999), Chlorofluorocarbons, in Environmental Tracers in Subsurface Hydrology, edited by P. G. Cook, and A. L. Herczeg, pp. 441478, Springer, New York.
  • Poeter, E. P., and M. C. Hill (1997), Inverse methods: A necessary next step in groundwater modeling, Ground Water, 35(2), 250260.
  • Poreda, R. J., T. E. Cerling, and D. K. Solomon (1988), Tritium and helium isotopes as hydrologictracers in a shallow unconfined aquifer, J. Hydrol., 103, 19.
  • Press, W. H., P. F. Flannery, S. A. Teukolsky, and W. T. Vetterling (1986), Numerical Recipes, 818 pp., Cambridge Univ. Press, New York.
  • Purtschert, R., B. E. Lehmann, and H. H. Loosli (2001a), Groundwater dating and subsurface processes investigated by noble gas isotopes (37Ar, 39Ar, 85Kr, 222Rn, 4He), in Water Rock Interaction, WRI-10, vol. 2, edited by R. Cidu, pp. 15691573, A. A. Balkema, Brookfield, Vt.
  • Purtschert, R., W. Aeschbach-Hertig, U. Beyerle, R. Kipfer, and H. H. Loosli (2001b), Palaeowaters from the Glatt Valley, Switzerland, in Palaeowaters in Coastal Europe: Evolution of Groundwater Since the Late Pleistocene, edited by W. M. Edmunds, and C. J. Milne, Geol. Soc. Spec. Publ., 189, 155162.
  • Rampon, G. (1965), Etat de la documentation sur les ouvrages souterrains implantés sur les feuilles topographiques de Nogent le Roi-Rambouillet et synthèse hydrogéologique proviso ire, Rapp. DSGR. 65.A7, Bur. des Rech. Géol. et Min., Paris.
  • Roether, W. (1967), Estimating the tritium input to groundwater from wine samples: Groundwater and direct run-off contribution to central European surface waters, in Isotopes in Hydrology, pp. 7379, Int. At. Energy Agency, Vienna.
  • Rueedi, J., M. S. Brennwald, R. Purtschert, U. Beyerle, M. Hofer, and R. Kipfer (2005), Estimating amount and spatial distribution of groundwater recharge in the Illumeden basin (Niger) based on 3H, 3He, and CFC-11 measurements, Hydrol. Processes, 19(17), 32853298.
  • Schlosser, P., M. Stute, H. Dorr, C. Sonntag, and K. O. Munnich (1988), Tritium/3He dating of shallow groundwater, Earth Planet. Sci. Lett., 89, 353362.
  • Schlosser, P., M. Stute, C. Sonntag, and K. O. Munnich (1989), Tritiogenic 3He in shallow groundwater, Earth Planet. Sci. Lett., 94, 245256.
  • Schneider, V. (2005), Apports de l'hydrodynamique et de la géochimie à la caractérisation des nappes de lÌOligocène et de lÌÉocene, et à la reconnaissance de leurs relations actuelles et passées: Origine de la dégradation de la nappe de lÌOligocène (sud-ouest du Bassin de Pris), Ph.D. thesis, Univ. Paris-Sud, Orsay, France.
  • Schneider, V., F. Barbecot, L. Bergonzini, C. Marlin, A. Filly, M. Massault, and L. Dever (2004), Geochemical-hydrological relationships between two groundwater bodies of the Paris Basin: Clues for a conceptual model, paper presented at International Workshop on the Application of Isotope Techniques in Hydrological and Environmental Studies, Int. At. Energy Agency, Paris.
  • Smethie, W. M.Jr., D. K. Solomon, S. L. Schiff, and G. G. Mathieu (1992), Tracing groundwater flow in the Borden Aquifer using krypton-85, J. Hydrol., 130, 279297.
  • Solomon, D. K., and P. G. Cook (1999), 3H and 3He, in Environmental Tracers in SubsurfaceHydrology, edited by P. G. Cook, and A. L. Herczeg, pp. 397424, Springer, New York.
  • Stute, M., and P. Schlosser (1999), Atmospheric noble gases, in Environmental Tracers in Subsurface Hydrology, edited by P. G. Cook, and A. L. Herczeg, pp. 349377, Springer, New York.
  • Stute, M., P. Schlosser, J. F. Clark, and W. S. Broecker (1992), Paleotemperatures in the southwestern United States derived from noble gas measurements in groundwater, Science, 256, 10001003.
  • Stute, M., M. Forster, H. Frischkorn, A. Serejo, J. F. Clark, P. Schlosser, W. S. Broecker, and G. Bonani (1995), Cooling of tropical Brazil (5°C) during the Last Glacial Maximum, Science, 269, 379383.
  • Vernoux, J. F., Y. M. Le Nindre, and J. C. Martin (2001), Relations nappe-rivière et impact des prélèvements d'eau souterraine sur le débit des cours d'eau dans le bassin de la Juine et de l'Essonne, Rapp. BRGM/RP-50637-FR, Bur. de Rech. Géol. et Min., Paris.
  • Waugh, D. W., T. M. Hall, and T. W. N. Haine (2003), Relationship among tracer ages, J. Geophys. Res., 108(C5), 3138, doi:10.1029/2002JC001325.
  • Weissmann, G. S., Y. Zhang, E. M. LaBolle, and G. E. Fogg (2002), Dispersion of groundwater age in an alluvial aquifer system, Water Resour. Res., 38(10), 1198, doi:10.1029/2001WR000907.
  • Winger, K., J. Feichter, M. Kalinowski, H. Sartorius, and C. Sclosser (2005), A new compilation of the atmospheric 85Krypton inventories from 1945 to 2000 and its evaluation in a global transport model, J. Environ. Radioact., 80, 183215.
  • Zuber, A. (1986), Mathematical models for the interpretation of environmental radioisotopes in groundwater systems, in Handbook of Environmental Isotope Geochemistry, vol. 2, The Terrestrial Environment B, edited by P. Fritz, and J. C. Fontes, pp. 159, Elsevier, New York.
  • Zuber, A., and P. Maloszewski (2001), Lumped-parameter models, in Environmental Isotopes in the Hydrological Cycle, vol. 6, Modelling, Tech. Doc. Hydrol.39, pp. 535, Int. At. Energy Agency, Paris.