SEARCH

SEARCH BY CITATION

Keywords:

  • calibration;
  • model development;
  • model evaluation

[1] A conceptual hydrological model structure contains several parameters that have to be estimated through matching observed and modeled watershed behavior in a calibration process. The requirement that a model simulation matches different aspects of system response at the same time has led the calibration problem toward a multiobjective approach. In this work we compare two multiobjective calibration approaches, each of which represents a different calibration philosophy. The first calibration approach is based on the concept of Pareto optimality and consists of calibrating all parameters with respect to a common set of objectives in one calibration stage. This approach results in a set of Pareto-optimal solutions representing the trade-offs between the selected calibration objectives. The second is a stepped calibration approach (SCA), which implies a stepwise calibration of sets of parameters that are associated with specific aspects of the system response. This approach replicates the steps followed by a hydrologist in manual calibration and develops a single solution. The comparison is performed considering the same set of objectives for the two approaches and two model structures of a different level of complexity. The difference in the two approaches, their reciprocal utility, and the practical implications involved in their application are analyzed and discussed using the Hesperange catchment case, an experimental basin in the Alzette River basin in Luxembourg. We show that the two approaches are not necessarily conflicting but can be complementary. The first approach provides useful information about the deficiencies of a model structure and therefore helps the model development, while the second attempts at determining a solution that is consistent with the data available. We also show that with increasing model complexity it becomes possible to reproduce the observations more accurately. As a result, the solutions for the different calibration objectives become less distinguishable from each other, indicating that calibration results become less dependent on the objective functions used when the model is a better representation of reality and has a higher potential to reproduce the observations.