SEARCH

SEARCH BY CITATION

References

  • Adeloye, A. J., et al. (1999), Climate change water resources planning impacts incorporating reservoir surface net evaporation fluxes: A case study, Int. J. Water Resour. Dev., 15, 561581.
  • Bowen, G. J., and J. Revenaugh (2003), Interpolating the isotopic composition of modern meteoric precipitation, Water Resour. Res., 39(10), 1299, doi:10.1029/2003WR002086.
  • Bowen, G. J., and B. Wilkinson (2002), Spatial distribution of δ18O in meteoric precipitation, Geology, 30, 315318.
  • Bowen, G. J., et al. (2005), Stable hydrogen and oxygen isotope ratios of bottled waters of the world, Rapid Commun. Mass Spectrom., 19, 34423450.
  • Clark, I., and P. Fritz (1997), Environmental Isotopes in Hydrogeology, 328 pp., A. F. Lewis, New York.
  • Coleman, M. L., et al. (1982), Reduction of water with zinc for hydrogen isotope analysis, Anal. Chem., 54, 993995.
  • Coplen, T. B. (1996), New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data, Geochim. Cosmochim. Acta, 60, 33593360.
  • Craig, H. (1961), Isotopic variations in meteoric waters, Science, 133, 17021703.
  • Dutton, A., et al. (2005), Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous United States, Hydrol. Processes, 19, 41214146.
  • Fessenden, J. E., et al. (2002), Rapid 18O analysis of small water and CO2 samples using a continuous-flow isotope ratio mass spectrometer, Rapid Commun. Mass Spectrom., 16, 12571260.
  • Fontes, J. C., et al. (1991), Paleorecharge by the Niger River (Mali) deduced from groundwater geochemistry, Water Resour. Res., 27, 199214.
  • Fraser, I., et al. (2006), The role of stable isotopes in human identification: A longitudinal study into the variability of isotopic signals in human hair and nails, Rapid Commun. Mass Spectrom., 20, 11091116.
  • Friedman, I., et al. (1992), Stable isotope composition of waters in southeastern California:1. Modern precipitation, J. Geophys. Res., 97, 57955812.
  • Friedman, I., G. I. Smith, C. A. Johnson, and R. J. Moscati (2002), Stable isotope compositions of waters in the Great Basin, United States: 2. Modern precipitation, J. Geophys. Res., 107(D19), 4401, doi:10.1029/2001JD000566.
  • Fritz, P., et al. (1974), Stable isotope content of a major prairie aquifer in central Manitoba, Canada, in Isotope Techniques in Groundwater Hydrology, vol. I, pp. 379398, Int. At. Energy Agency, Vienna.
  • Gat, J. R. (1981), Lakes, in Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, Tech. Rep. Ser. 210, edited by J. R. Gat, and R. Gonfiantini, pp. 203221, Int. At. Energy Agency, Vienna.
  • Giménez-Miralles, J. E., et al. (1999), Regional origin assignment of red wines from Valencia (Spain) by 2H NMR and 13C IRMS stable isotope analysis of fermentative ethanol, J. Agric. Food Chem., 47, 26452652.
  • Grasby, S., and R. Betcher (2002), Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba, Can. J. Earth Sci., 39, 10531063.
  • Hutson, S. S., et al. (2004), Estimated use of water in the United States in 2000, U.S. Geol. Surv. Circ., 1268.
  • Ingraham, N. L., and B. E. Taylor (1991), Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada, Water Resour. Res., 27, 7790.
  • Kendall, C., and T. B. Coplen (2001), Distribution of oxygen-18 and deuterium in river waters across the United States, Hydrol. Processes, 15, 13631393.
  • Kreuzer-Martin, H. W., et al. (2004a), Stable isotope ratios as a tool in microbial forensics—part 1. Microbial isotopic composition as a function of growth medium, J. Forensic Sci., 49, 954960.
  • Kreuzer-Martin, H. W., et al. (2004b), Stable isotope ratios as a tool in microbial forensics—part 2. Isotopic variation among different growth media as a tool for sourcing origins of bacterial cells or spores, J. Forensic Sci., 49, 961967.
  • Manning, A. H., and D. K. Solomon (2003), Using noble gases to investigate mountain-front recharge, J. Hydrol., 275, 194207.
  • McCabe, G. J., et al. (2004), Pacific and Atlantic ocean influences on multidecadal drought frequency in the United States, Proc. Natl. Acad. Sci. U. S. A., 101, 41364141.
  • Montaseri, M., and A. J. Adeloye (2004), A graphical rule for volumetric evaporation loss correction in reservoir capacity-yield-performance planning in Urmia region, Iran, Water Resour. Manage., 18, 5574.
  • Mote, P. W., et al. (2005), Declining mountain snowpack in western North America, Bull. Am. Meteorol. Soc., 86, 3949.
  • National Geophysical Data Center (1998), ETOPO-5 Five Minute Gridded World Elevation, http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML, Boulder, Colo.
  • Poage, M. A., and C. P. Chamberlain (2001), Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change, Am. J. Sci., 301, 115.
  • Rozanski, K., et al. (1993), Isotopic patterns in modern global precipitation, in Climate Change in Continental Isotopic Records, Geophys. Monogr. Ser., vol. 78, edited by P. K. Swart et al., pp. 136, AGU, Washington, D. C.
  • Smith, G. I., et al. (2002), Stable isotope compositions of waters in the Great Basin, United States: 3. Comparison of groundwaters with modern precipitation, J. Geophys. Res., 107(D19), 4402, doi:10.1029/2001JD000567.
  • Welker, J. M. (2000), Isotopic (δ18O) characteristics of weekly precipitation collected across the USA: An initial analysis with application to water source studies, Hydrol. Processes, 14, 14491464.
  • Wilson, J. L., H. Guan (2004), Mountain-block hydrology and mountain-front recharge, in Groundwater Recharge in a Desert Environment: The Southwestern United States, Water Sci. Appl. Ser., vol. 9, edited by J. F. Hogan, F. M. Phillips, and B. R. Scanlon, pp. 113137, AGU, Washington, D. C.
  • Zuber, A., et al. (2004), Age and flow pattern of groundwater in a Jurassic limestone aquifer and related Tertiary sands derived from combined isotope, noble gas and chemical data, J. Hydrol., 286, 87112.