SEARCH

SEARCH BY CITATION

References

  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O'Connell, and J. Rasmussen (1986a), An introduction to the European Hydrological System–Système Hydrologique Européen, “SHE,” 1, History and philosophy of a physically-based, distributed modelling system, J. Hydrol., 87, 4559.
  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O'Connell, and J. Rasmussen (1986b), An introduction to the European Hydrological System–Système Hydrologique Européen, “SHE,” 2, Structure of a physically-based, distributed modelling system, J. Hydrol., 87, 6177.
  • Amorocho, J., and W. E. Hart (1964), A critique of current methods in hydrologic systems investigation, Eos Trans. AGU, 45, 307321.
  • Anderson, M. G., and P. D. Bates (2001), Hydrological science: Model credibility and scientific integrity, in Model Validation: Perspectives in Hydrological Science, edited by M. G. Anderson, and P. D. Bates, pp. 121, John Wiley, Hoboken, N. J.
  • Barnes, C. J. (1995), The art of catchment modeling: What is a good model? Environ. Int., 21, 747751.
  • Bathurst, J. C., J. M. Wicks, and P. E. O'Connell (1995), The SHE/SHESED basin scale water flow and sediment transport modelling system, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 563594, Water Resour. Publ., Highlands Ranch, Colo.
  • Bedient, P. B., and W. C. Huber (1992), Hydrology and Floodplain Analysis, 2nd ed., Addison-Wesley, Boston, Mass.
  • Betson, R. P., and C. V. Ardis Jr. (1978), Implications for modelling surface-water hydrology, in Hillslope Hydrology, edited by M. J. Kirkby, pp. 295324, John Wiley, Hoboken, N. J.
  • Beven, K. (1981), Kinematic subsurface stormflow, Water Resour. Res., 17, 14191424.
  • Beven, K. (1985), Distributed models, in Hydrological Forecasting, edited by M. G. Anderson, and T. P. Burt, pp. 405435, John Wiley, Hoboken, N. J.
  • Beven, K. (1989), Changing ideas in hydrology—The case of physically-based models, J. Hydrol., 105, 157172.
  • Beven, K. (1991), Modeling preferential flow: An uncertain future?, in Preferential Flow, edited by T. J. Gish, pp. 111, Am. Soc. of Agric. Eng., St. Joseph, Mich.
  • Beven, K. J. (1993), Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16(1), 4151.
  • Beven, K. (1996), A discussion of distributed hydrological modelling, in Distributed Hydrological Modelling, edited by M. B. Abbott, and J. C. Refsgaard, pp. 255278, Springer, New York.
  • Beven, K. (2001a), How far can we go in distributed hydrological modelling? Hydrol. Earth Syst. Sci., 5, 112.
  • Beven, K. J. (2001b), Rainfall-Runoff Modelling—The Primer, 360 pp., John Wiley, Hoboken, N. J.
  • Beven, K. (2002), Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Processes, 16, 189206.
  • Beven, K. (2006a), Searching for the holy grail of scientific hydrology: Qt = H(SR)A as closure, Hydrol. Earth Syst. Sci. Discuss., 3, 769792.
  • Beven, K. (2006b), A manifesto for the equifinality thesis, J. Hydrol., 320, 1836.
  • Beven, K., and M. J. Kirkby (1979), A physically based, variable contributing area model of basin hydrology, Hydrol. Sci., 24, 4369.
  • Beven, K., R. Lamb, P. Quinn, R. Romanowicz, and J. Freer (1995), TOPMODEL, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 627668, Water Resour. Publ., Highlands Ranch, Colo.
  • Bouma, J., and J. P. Bell (1983), Preface, spatial variability, Agric. Water Manage., 6, 9192.
  • Bredehoeft, J. (2005), The conceptualization model problem—Surprise, Hydrogeol. J., 13, 3746.
  • Brooks, R. H., and A. T. Corey (1964), Hydraulic properties of porous media, Hydrol. Pap. 3, Colo. State Univ., Fort Collins.
  • Brutsaert, W. (1982), Evaporation Into the Atmosphere: Theory, History and Applications, 299 pp., Springer, New York.
  • Brutsaert, W. (2005), Hydrology: An Introduction, 605 pp., Cambridge Univ. Press, New York.
  • Burges, S. J. (1986), Trends and directions in hydrology, Water Resour. Res., 22, 1S5S.
  • Cabral, M. C., L. Garrote, R. L. Bras, and D. Entekhabi (1992), A kinematic model of infiltration and runoff generation in layered and sloped soils, Adv. Water Resour., 15, 311324.
  • Calver, A., and W. L. Wood (1995), The Institute of Hydrology distributed model, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 595626, Water Resour. Publ., Highlands Ranch, Colo.
  • Celia, M. A., E. T. Bouloutas, and R. L. Zarba (1990), A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 14831496.
  • Chen, Z., R. S. Govindaraju, and M. L. Kavvas (1994), Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields: 2. Numerical simulations, Water Resour. Res., 30, 535548.
  • Cherkauer, K. A., L. C. Bowling, and D. P. Lettenmaier (2003), Variable infiltration capacity cold land process model updates, Global Planet. Change, 38, 151159.
  • Ciarapica, L., and E. Todini (2002), TOPKAPI: A model for the representation of the rainfall-runoff process at different scales, Hydrol. Processes, 16, 207229.
  • Clarke, R. T. (1973), A review of some mathematical models used in hydrology, with observations on their calibration and use, J. Hydrol., 19, 120.
  • Costa-Cabral, M. C., and S. J. Burges (1994), Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas, Water Resour. Res., 30, 16811692.
  • Crawford, N. H., and S. J. Burges (2004), History of the Stanford Watershed Model, Water Resour. Impact, 6, 35.
  • Crawford, N. H., and R. K. Linsley (1966), Digital simulation in hydrology: Stanford watershed model IV, Tech. Rep. 39, Dep. of Civ. Eng., Stanford Univ., Stanford, Calif.
  • Dawdy, D. R. (1969), Considerations involved in evaluating mathematical modelling of urban hydrologic systems, U.S. Geol. Surv. Water Supply Pap. 1591-D.
  • Dawdy, D. R., and T. O'Donnell (1965), Mathematical models of catchment behavior, J. Hydraul. Div. Am. Soc. Civ. Eng., 91, 123137.
  • de St. Venant, B. (1871), Theorie du mouvement non-permanent des eaux avec application aux crues des riveres et a l'introduction des Marees dans leur lit, C. R. Hebd. Seances Acad. Sci., 73, 148154.
  • Dooge, J. C. I. (1957), Rational method for estimating flood peaks, Engineering, 184, 374377.
  • Dooge, J.C.I. (1986), Looking for hydrologic laws, Water Resour. Res., 22, 46S58S.
  • Downer, C. W., and F. L. Ogden (2004), GSSHA: Model to simulate diverse stream flow producing processes, J. Hydrol. Eng., 9, 161174.
  • Downer, C. W., F. L. Ogden, W. D. Martin, and R. S. Harmon (2002), Theory, development, and applicability of the surface water hydrologic model CASC2D, Hydrol. Processes, 16, 255275.
  • Duffy, C. J. (1996), A two-state integral-balance model for soil moisture and groundwater dynamics in complex terrain, Water Resour. Res., 32, 24212434.
  • Dunne, T., W. Zhang, and B. F. Aubry (1991), Effects of rainfall, vegetation, and microtopography on infiltration and runoff, Water Resour. Res., 27, 22712285.
  • Durner, W. (1994), Hydraulic conductivity estimation for soils with heterogeneous pore structure, Water Resour. Res., 30, 211223.
  • Eagleson, P. S. (1970), Dynamic Hydrology, McGraw-Hill, New York.
  • Eagleson, P. S. (2002), Ecohydrology—Darwinian Expression of Vegetation Form and Function, 443 pp., Cambridge Univ. Press, New York.
  • Ebel, B. A., and K. Loague (2006), Physics-based hydrologic response simulation: Seeing through the fog of equifinality, Hydrol. Processes, 20, 28872900.
  • Emmett, W. W. (1978), Overland flow, in Hillslope Hydrology, edited by M. J. Kirkby, pp. 145176, John Wiley, Hoboken, N. J.
  • Endreny, T. A., and E. F. Wood (2001), Representing elevation uncertainty in runoff modelling and flowpath mapping, Hydrol. Processes, 15, 22232236.
  • Etchevers, P., et al. (2004), Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project), Ann. Glaciol., 38, 150158.
  • Feddes, R. A., P. J. Kowalik, and H. Zaradny (1978), Simulation of Field Water Use and Crop Yield, John Wiley, Hoboken, N. J.
  • Fread, D. L. (1993), Flow routing, in Handbook of Hydrology, edited by D. R. Maidment, pp. 10.1110.36, McGraw-Hill, New York.
  • Freeze, R. A. (1972), Role of subsurface flow in generating surface runoff: 1. Base flow contributions to channel flow, Water Resour. Res., 8, 609623.
  • Freeze, R. A. (1974), Streamflow generation, Rev. Geophys., 12, 627647.
  • Freeze, R. A. (1978), Mathematical models of hillslope hydrology, in Hillslope Hydrology, edited by M. J. Kirkby, pp. 177226, John Wiley, Hoboken, N. J.
  • Freeze, R. A., and J. A. Cherry (1979), Groundwater, Prentice-Hall, Upper Saddle River, N. J.
  • Freeze, R. A., and R. L. Harlan (1969), Blueprint for a physically-based, digitally-simulated hydrologic response model, J. Hydrol., 9, 237258.
  • Gan, T. Y., and S. J. Burges (1990), An assessment of a conceptual rainfall-runoff model's ability to represent the dynamics of small hypothetical catchments: 2. Hydrologic responses for normal and extreme rainfall, Water Resour. Res., 26, 16051619.
  • Goodrich, D. C., C. L. Unkrich, R. E. Smith, and D. A. Woolhiser (2002), KINEROS2: A distributed kinematic runoff and erosion model, paper presented at 2nd Federal Interagency Hydrologic Modeling Conference, Subcomm. on Hydrol., Las Vegas, Nev.
  • Goodrich, D. C., C. L. Unkrich, R. E. Smith, and D. A. Woolhiser (2006), KINEROS2—New features and capabilities, paper presented at 3rd Federal Interagency Hydrologic Modeling Conference, Subcomm. on Hydrol., Reno, Nev.
  • Gottardi, G., and M. Venutelli (1993), A control-volume finite-element model for two-dimensional overland flow, Adv. Water Resour., 16, 277284.
  • Grayson, R. B., I. D. Moore, and T. A. McMahon (1992a), Physically based hydrologic modeling: 1. A terrain-based model for investigative purposes, Water Resour. Res., 28, 26392658.
  • Grayson, R. B., I. D. Moore, and T. A. McMahon (1992b), Physically based hydrologic modeling: 2. Is the concept realistic? Water Resour. Res., 26, 26592666.
  • Grayson, R. B., G. Bloschl, and I. D. Moore (1995), Distributed parameter hydrologic modelling using vector elevation data: THALES and TAPES-C, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 669696, Water Resour. Publ., Highlands Ranch, Colo.
  • Green, W. H., and G. A. Ampt (1911), Studies on soil physics, part I. Flow of air and water through soils, J. Agric. Sci., 4, 124.
  • Harbaugh, A. W. (2005), MODFLOW-2005, the U.S. Geological Survey modular ground-water model—The ground-water flow process, U.S. Geol. Surv., Tech. Methods, Book 6, Chap. A16.
  • Henderson, F. M. (1966), Open Channel Flow, Macmillan, New York.
  • Hewlett, J. D., and C. A. Troendle (1975), Non-point and diffused water sources: A variable source area problem, paper presented Symposium on Watershed Management, Am. Soc. of Civ. Eng., Utah State Univ., Logan.
  • Hillel, D. (1980), Applications of Soil Physics, Elsevier, New York.
  • Hillel, D. (1998), Environmental Soil Physics, 771 pp., Elsevier, New York.
  • Holzbecher, E., and O. F. Vasiliev (2005), Coupling aspects of heat and mass transfer, in Coupled Models for the Hydrological Cycle: Integrating Atmosphere, Biosphere, and Pedosphere, edited by A. Bronstert et al., pp. 175188, Springer, New York.
  • Holzbecher, E., M. Bonnell, A. Bronstert, and O. F. Vasiliev (2005), Fluxes, compartments and ordering of feedbacks, in Coupled Models for the Hydrological Cycle: Integrating Atmosphere, Biosphere, and Pedosphere, edited by A. Bronstert et al., pp. 7695, Springer, New York.
  • Ivanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi (2004), Catchment hydrologic response with a fully distributed triangulated irregular network model, Water Resour. Res., 40, W11102, doi:10.1029/2004WR003218.
  • Izzard, C. F. (1944), The surface profiles of overland flow, Eos Trans. AGU, 25, 959968.
  • James, L. D., and S. J. Burges (1982), Selection, calibration, and testing of hydrologic models, in Hydrologic Modeling of Small Watersheds, edited by C. T. Haan, H. P. Johnson, and D. L. Brakensiek, pp. 437472, Am. Soc. of Agric. Eng., St. Joseph, Mich.
  • Jobson, H. E., and A. W. Harbaugh (1999). Modifications to the diffusion analogy surface-water flow model (DAFLOW) for coupling to the modular finite-difference ground-water flow model (MODFLOW), U.S. Geol. Surv. Open File Rep. 99217, 107 p.
  • Jones, N. L., S. G. Wright, and D. R. Maidment (1990), Watershed delineation with triangle-based terrain models, J. Hydraul. Eng., 116, 12321251.
  • Julien, P. Y., B. Saghafian, and F. L. Ogden (1995), Raster-based hydrologic modeling of spatially-varied surface runoff, Water Resour. Bull., 31, 523536.
  • Kavvas, M. L. (1999), On the coarse-graining of hydrologic processes with increasing scales, J. Hydrol., 217, 191202.
  • Kavvas, M. L., et al. (2004), Watershed environmental hydrology (WEHY) model based on upscaled conservation equations: Hydrologic module, J. Hydrol. Eng., 9, 450464.
  • Kirkby, M. J. (Ed.) (1978), Hillslope Hydrology, John Wiley, Hoboken, N. J.
  • Kirkby, M. J. (1988), Hillslope runoff processes and models, J. Hydrol., 100, 315339.
  • Klemeš, V. (1986), Dilettantism in hydrology: Transition or destiny? Water Resour. Res., 22, 177S188S.
  • Kosugi, K. (1996), Lognormal distribution model for unsaturated soil hydraulic properties, Water Resour. Res., 32, 26972703.
  • Kuchment, L. W., A. N. Gelfan, and V. N. Demidov (2000), A distributed model of runoff generation in the permafrost regions, J. Hydrol., 240, 122.
  • Langbein, W. B., and J. V. B. Wells (1955), The water in the rivers and creeks, in Water: The Yearbook of Agriculture, edited by A. Stefferud, pp. 5262, U.S. Dep. of Agric., Washington, D. C.
  • Leavesley, G. H., and L. G. Stannard (1995), The precipitation-runoff modeling system—PRMS, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 281310, Water Resour. Publ., Highlands Ranch, Colo.
  • Leavesley, G. H., R. W. Lichty, B. M. Troutman, and L. G. Saindon (1983), Precipitation-runoff modeling system—User's manual, U.S. Geol. Surv. Water Resour. Invest. Rep. 83-4238.
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14,41514,428.
  • Lighthill, M. J., and G. B. Whitham (1955), On kinematic waves. I. Flood movement in long rivers, Proc. R. Soc. London, Ser. A, 229, 281316.
  • Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus (1982), Hydrology for Engineers, 508 pp., 3rd ed., McGraw-Hill, New York.
  • Loague, K., and J. E. VanderKwaak (2002), Simulating hydrological response for the R-5 catchment: Comparison of two models and the impact of the roads, Hydrol. Processes, 16, 10151032.
  • Loague, K., and J. E. VanderKwaak (2004), Physics-based hydrologic response simulation: Platinum bridge, 1958 Edsel, or useful tool, Hydrol. Processes, 18, 29492956.
  • Loague, K., C. S. Heppner, B. B. Mirus, B. A. Ebel, Q. Ran, A. E. Carr, S. H. BeVille, and J. E. VanderKwaak (2006), Physics-based hydrologic-response simulation: Foundation for hydroecology and hydrogeomorphology, Hydrol. Processes, 20, 12311237.
  • Meinzer, O. E. (Ed.) (1942), Hydrology, 712 pp., Dover, New York.
  • Meselhe, E. A., and F. M. Holly Jr. (1997), Invalidity of Priessmann scheme for transcritical flow, J. Hydraul. Eng., 123(7), 652655.
  • Michaud, J., and S. Sorooshian (1994), Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed, Water Resour. Res., 30, 593605.
  • Monteith, J. L. (1965), Evaporation and environment: The state and movement of water in living organisms, in Nineteenth Symposium Society for Experimental Biology, pp. 205234, Elsevier, New York.
  • Monteith, J. L., and M. H. Unsworth (1990), Principles of Environmental Physics, 2nd ed., 291 pp., Edward Arnold, London.
  • Morris, E. M., and D. A. Woolhiser (1980), Unsteady one-dimensional flow over a plane: Partial equilibrium and recession hydrographs, Water Resour. Res., 16, 355360.
  • Mulvany, T. J. (1851), On the use of self-registering rain and flood gauges, Trans. Inst. Civ. Eng. Ireland, 4, 18.
  • Musgrave, G. W. (1955), How much of the rain enters the soil?, in Water: The Yearbook of Agriculture, edited by A. Stefferud, pp. 151159, U.S. Dep. of Agric., Washington, D. C.
  • Narasimhan, T. N. (1998), Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas, Water Resour. Res., 34, 3346.
  • Niswonger, R. G., and D. E. Prudic (2005), Documentation of the Streamflow-Routing (SFR2) package to include unsaturated flow beneath streams—A modification to SFR1, U.S. Geol. Tech. Methods, Book 6, Chap. A13, 47 pp.
  • Niswonger, R. G., D. E. Prudic, and R. S. Regan (2006), Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005, U.S. Geol. Tech. Methods, Book 6, Chap. A19, 62 pp.
  • O'Callaghan, J. F., and D. M. Mark (1984), The extraction of drainage networks from digital elevation data, Comput. Vision Graphics Image Process., 28, 323344.
  • O'Connell, P. E., and E. Todini (1996), Modelling of rainfall, flow and mass transport in hydrological systems: An overview, J. Hydrol., 175, 316.
  • Ogden, F. L. (1998), CASC2D reference manual, report, Dep. of Civ. and Environ. Eng., Univ. of Conn., Storrs.
  • Ogden, F. L., and B. Saghafian (1997), Green and Ampt infiltration with redistribution, J. Irrig. Drainage Eng., 123, 386393.
  • Oreskes, N., and K. Belitz (2001), Philosophical issues in model assessment, in Model Validation: Perspectives in Hydrological Science, edited by M. G. Anderson, and P. D. Bates, pp. 2341, John Wiley, Hoboken, N. J.
  • Oreskes, N., K. Shrader-Frechette, and K. Belitz (1994), Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263, 641646.
  • Palacios-Velez, O. L., and B. Cuevas-Renaud (1986), Automated river-course, ridge and basin delineation from digital elevation data, J. Hydrol., 86, 299314.
  • Panday, S., and P. S. Huyakorn (2004), A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow, Adv. Water Resour., 27, 361382.
  • Paniconi, C., M. Marrocu, M. Putti, and M. Verbunt (2003), Newtonian nudging for a Richards equation-based distributed hydrological model, Adv. Water Resour., 26, 161178.
  • Pebesma, E. J., P. Switzer, and K. Loague (2005), Error analysis for the evaluation of model performance: Rainfall-runoff event time series data, Hydrol. Processes, 19, 15291548.
  • Philip, J. R. (1975), Some remarks on science and catchment prediction, in Prediction in Catchment Hydrology, edited by T. G. Chapman, and F. X. Dunin, pp. 2330, Aust. Acad. of Sci., Canberra.
  • Ponce, V. M., R. M. Li, and D. B. Simons (1978), Applicability of kinematic and diffusion models, J. Hydraul. Eng., 104, 353360.
  • Priestley, C. H. B., and R. J. Taylor (1972), On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 8192.
  • Prudic, D. E., L. F. Konikow, and E. R. Banta (2004), A new Streamflow-Routing (SFR1) Package to simulate stream-aquifer interaction with MODFLOW-2000, U.S. Geol. Surv. Open File Rep. 2004-1042, 95 pp.
  • Qu, Y. (2005), An integrated hydrologic model for multi-process simulation using semi-discrete finite volume approach, Ph.D. dissertation, Pa. State Univ., State College.
  • Raats, P. A. C., D. Smiles, and A. W. Warrick (2002), Environmental Mechanics—Water, Mass and Energy Transfer in the Biosphere, Geophysical Monogr. Ser., vol. 129, 345 pp., AGU, Washington, D. C.
  • Reed, S., V. Koren, M. Smith, Z. Zhang, F. Moreda, and D. Seo (2004), Overall distributed model intercomparison project results, J. Hydrol., 298, 2760.
  • Refsgaard, J. C. (1996), Terminology, modelling protocol and classification of hydrological model codes, in Distributed Hydrological Modelling, edited by M. B. Abbott, and J. C. Refsgaard, pp. 1739, Springer, New York.
  • Refsgaard, J. C. and B. Storm (1995), MIKE SHE, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 809846, Water Resour. Publ., Highlands Ranch, Colo.
  • Reggiani, P., and J. Schellekens (2003), Modelling of hydrological responses: The representative elementary watershed approach as an alternative blueprint for watershed modelling, Hydrol. Processes, 17, 37853789.
  • Rodriguez-Iturbe, I. (2000), Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics, Water Resour. Res., 36, 39.
  • Ronan, A. D., D. E. Prudic, C. E. Thodal, and J. Constantz (1998), Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream, Water Resour. Res., 34, 21372153.
  • Sasowsky, I. D. (2006), Model verification and documentation are needed, Eos Trans. AGU, 87, 248.
  • Senarath, S. U. S., F. L. Ogden, C. W. Downer, and H. O. Sharif (2000), On the calibration and verification of two-dimensional, distributed, Hortonian, continuous watershed models, Water Resour. Res., 36, 14951510.
  • Seyfried, M. S., and B. P. Wilcox (1995), Scale and the nature of spatial variability: Field examples having implications for hydrologic modeling, Water Resour. Res., 31, 173184.
  • Šimůnek, J., M. Šejna, and M. T. van Genuchten (1999), The HYDRUS-2D software package for simulating two-dimensional movement of water, heat, and multiple solutes in variably saturated media, Int. Ground Water Model. Cent., Colo. Sch. of Mines, Golden.
  • Šimůnek, J., N. J. Jarvis, M. T. van Genuchten, and A. Gärdenäs (2003), Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone, J. Hydrol., 272, 1435.
  • Šimůnek, J., M. T. van Genuchten, and M. Šejna (2005), The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 3.0, Dep. of Environ. Sci., Univ. of Calif., Riverside.
  • Šimůnek, J., M. T. van Genuchten, and M. Šejna (2006), The HYDRUS software package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version 1.0, technical manual, PC Progress, Prague, Czech Republic.
  • Singh, V. P. (1995), Watershed modeling, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 122, Water Resour. Publ., Highlands Ranch, Colo.
  • Singh, V. P. (1997), Kinematic Wave Modeling in Water Resources, John Wiley, Hoboken, N. J.
  • Singh, V. P., and D. A. Woolhiser (2002), Mathematical modeling of watershed hydrology, J. Hydrol. Eng., 7, 270292.
  • Smith, M. B., D. Seo, V. I. Koren, S. M. Reed, Z. Zhang, Q. Duan, F. Moreda, and S. Cong (2004), The distributed model intercomparison project (DMIP): Motivation and experiment design, J. Hydrol., 298, 426.
  • Smith, R. E., and D. C. Goodrich (2000), Model for rainfall excess patterns on randomly heterogeneous areas, J. Hydrol. Eng., 5, 355362.
  • Smith, R. E., C. Corradini, and F. Melone (1993), Modeling infiltration for multistorm runoff events, Water Resour. Res., 29, 133144.
  • Smith, R. E., D. C. Goodrich, D. A. Woolhiser, and C. L. Unkrich (1995), KINEROS—A kinematic runoff and erosion model, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 697732, Water Resour. Publ., Highlands Ranch, Colo.
  • Smith, R. E., K. R. J. Smettem, P. Broadbridge, and D. A. Woolhiser (2002), Infiltration Theory for Hydrologic Applications, Water Resour. Monogr. Ser., vol. 15, 212 pp., AGU, Washington, D. C.
  • Soil Conservation Service (1968), National Engineering Handbook, sect. 4, Hydrology, suppl. A, U.S. Dep. of Agric., Washington, D. C.
  • Stefferud, A. (Ed.) (1955), Water: The Yearbook of Agriculture 1955, 751 pp., U.S. Dep. of Agric., Washington, D. C.
  • Swain, E. D., and E. J. Wexler (1996), A coupled surface-water and ground-water flow model (MODBRNCH) for simulation of stream-aquifer interaction, U.S. Geol. Surv. Tech. Water Resour. Invest., Book 6, Chap. A6, 125 pp.
  • Szilagyi, J., and M. B. Parlange (1999), A geomorphology-based semi-distributed watershed model, Adv. Water Resour., 23, 177187.
  • Tarboten, D. G. (1997), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res., 33, 309319.
  • Theis, C. V. (1967), Aquifer and models, in Symposium on Groundwater Hydrology, edited by M. A. Marino, pp. 138148, Am. Water Resour. Assoc., Middleburg, Va.
  • Thoms, R. B., R. L. Johnson, and R. W. Healy (2006), User's guide to the variably saturated flow (VSF) process for MODFLOW, U.S. Geol. Surv. Tech. Methods, Book 6, Chap. A18, 58 pp.
  • Tindall, J. A., and J. R. Kunkel (1999), Unsaturated Zone Hydrology for Scientists and Engineers, Prentice-Hall, Upper Saddle River, N. J.
  • Todini, E. (1988), Rainfall-runoff modeling—Past, present and future, J. Hydrol., 100, 341352.
  • Todini, E. (1996), The ARNO rainfall-runoff model, J. Hydrol., 175, 339382.
  • Tucker, G. E., S. T. Lancaster, N. M. Gasparini, R. L. Bras, and S. M. Rybarczyk (2001), An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks, Comput. Geosci., 27, 959973.
  • U.S. Army Corps of Engineers (USACE) (2000), Hydrologic modeling system HEC-HMS technical reference manual, Rep. CPD-74B, Hydrol. Eng. Cent., Davis, Calif.
  • van Dam, J. C., and R. A. Feddes (2000), Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation, J. Hydrol., 233, 7285.
  • VanderKwaak, J. E. (1999), Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems, Univ. of Waterloo, Waterloo, Ont., Canada.
  • VanderKwaak, J. E., and K. Loague (2001), Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model, Water Resour. Res., 37, 9991013.
  • van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898.
  • van Genuchten, M. T. (1985), Convective-dispersive transport of solutes involved in sequential first-order decay reactions, Comput. Geosci., 11, 129147.
  • Vogel, T., and M. Císlerová (1988), On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve, Transp. Porous Media, 3, 115.
  • Vrugt, J. A., J. W. Hopmans, and J. Šimůnek (2001a), Calibration of a two-dimensional root water uptake model, Soil Sci. Soc. Am. J., 65, 10271037.
  • Vrugt, J. A., M. R. van Wijk, J. W. Hopmans, and J. Šimůnek (2001b), One-, two-, and three-dimensional root water uptake functions for transient modeling, Water Resour. Res., 37(10), 24572470.
  • Weinberg, A. M. (1972), Science and trans-science, in Civilization and Science, in Conflict or Collaboration? A Ciba Foundation Symposium, pp. 105122, Elsevier, New York.
  • Wigmosta, M. S., and S. J. Burges (1997), An adaptive modeling and monitoring approach to describe the hydrologic behavior of small catchments, J. Hydrol., 202, 4877.
  • Wigmosta, M. S., and D. P. Lettenmaier (1999), A comparison of simplified methods for routing topographically driven subsurface flow, Water Resour. Res., 35, 255264.
  • Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier (1994), A distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 30, 16651679.
  • Wigmosta, M. S., B. Nijssen, P. Storck, and D. P. Lettenmaier (2002), The distributed hydrology soil vegetation model, in Mathematical Models of Small Watershed Hydrology and Applications, edited by V. P. Singh, pp. 742, Water Resour. Publ., Highlands Ranch, Colo.
  • Wood, E. F., M. Sivapalan, K. Beven, and L. Band (1988), Effects of spatial variability and scale with implications to hydrologic modeling, J. Hydrol., 102, 2947.
  • Woolhiser, D. A. (1996), Search for physically based runoff model—A hydrologic El Dorado? J. Hydraul. Eng., 122, 122129.
  • Woolhiser, D. A., and D. C. Goodrich (1988), Effect of storm rainfall intensity patterns on surface runoff, J. Hydrol., 102, 335354.
  • Woolhiser, D. A., and J. A. Liggett (1967), Unsteady, one-dimensional flow over a plane: The rising hydrograph, Water Resour. Res., 3, 753771.
  • Woolhiser, D. A., R. E. Smith, and D. C. Goodrich (1990), KINEROS, a kinematic runoff and erosion model: Documentation and user manual, Rep. ARS-77, Agric. Res. Serv., U.S. Dep. of Agric., Washington, D. C.
  • Yang, D., S. Herath, and K. Musiake (2000), Comparison of different distributed hydrological models for characterization of catchment spatial variability, Hydrol. Processes, 14, 403416.
  • Yeh, G. T., S. Sharp-Hansen, B. Lester, R. Strobl, and J. Scarbrough (1992), 3DFEMWATER/3DLEWASTE: Numerical codes for delineating wellhead protection areas in agricultural regions based on the assimilative capacity criterion, Rep. EPA/600/R/R-92/223, U.S. Environ. Prot. Agency, Washington, D. C.
  • Yeh, G. T., H. P. Cheng, G. B. Huang, F. Zhang, H. C. Lin, E. Edris, and D. Richards (2004), A numerical model of flow, heat transfer, and salinity, sediment, and water quality transport in watershed systems of 1-D stream-river network, 2-D overland regime, and 3D subsurface media (WASH123D: version 2.0), technical report, CHL Waterw. Exp. Stn., U.S. Army Corps of Eng., Vicksburg, Miss.
  • Yeh, G. T., G. B. Huang, H. P. Cheng, F. Zhang, H. C. Lin, E. Edris, and D. Richards (2006), A first-principle, physics-based watershed model: WASH123D, in Watershed Models, edited by V. P. Singh, and D. K. Frevert, pp. 211244, CRC Press, Boca Raton, Fla.
  • Zhang, W. (1990), Numerical simulation of the hydrodynamics of overland flow with spatial variation in its physical characteristics, Water Resour. Ser. Tech. Rep. 123, Dep. of Civ. and Environ. Eng., Univ. of Wash., Seattle, Wash.