SEARCH

SEARCH BY CITATION

References

  • Andréassian, V., C. Perrin, C. Michel, I. Usart-Sanchez, and J. Lavabre (2001), Impact of imperfect rainfall knowledge on the efficiency of watershed models, J. Hydrol., 250, 206223.
  • Andréassian, V., C. Perrin, and C. Michel (2004), Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models, J. Hydrol., 286, 1935.
  • Arnaud, P., C. Bouvier, L. Cisneros, and R. Dominquez (2002), Influence of rainfall spatial variability on flood prediction, J. Hydrol., 260, 216230.
  • Beven, K. (1989), Changing ideas in hydrology - The case of physically based models, J. Hydrol., 10, 157172.
  • Beven, K. (1993), Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16, 4151.
  • Beven, K. (2006), Searching for the Holy Grail of scientific hydrology: Qt = H (S, R, Δt)A as closure, Hydrol. Earth Syst. Sci., 10, 609618.
  • Beven, K. J. (2002), Uncertainty and the detection of structural change in models of environmental systems, in Environmental Foresight and Models: A Manifesto, edited by M. B. Beck, Elsevier Science, The Netherlands, 227250.
  • Beven, K. J., and A. M. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Processes, 6, 279298.
  • Beven, K. J., and G. M. Hornberger (1982), Assessing the effect of spatial patterns of rainfall in modeling stream flow hydrographs, Water Resour. Bull., 18(5), 823829.
  • Carpenter, T. M., K. P. Georgakakos, and J. A. Sperfslage (2001), On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use, J. Hydrol., 253, 169193.
  • De Groen, M. M., and H. H. G. Savenije (2006), A monthly interception equation based on the statistical characteristics of daily rainfall, Water Resour. Res., 42, W12417, doi:10.1029/2006WR005013.
  • Dooge, J. C. I. (2005), Bringing it all together, Hydrol. Earth Syst. Sci., 9, 314.
  • Eckhardt, K., L. Breuer, and H. G. Frede (2003), Parameter uncertainty and the significance of simulated land use change effects, J. Hydrol., 273(1–4), 164176, doi:10.1016/S0022-1694(02)00395-5.
  • Fenicia, F., H. H. G. Savenije, P. Matgen, and L. Pfister (2006), Is the groundwater reservoir linear? Learning from data in hydrological modelling, Hydrol. Earth Syst. Sci., 10, 139151.
  • Fenicia, F., H. H. G. Savenije, P. Matgen, and L. Pfister (2007), A comparison of alternative multiobjective calibration strategies for hydrological modeling, Water Resour. Res., 43, W03434, doi:10.1029/2006WR005098.
  • Finnerty, B. D., M. B. Smith, D.-J. Seo, V. Koren, and G. E. Moglen (1997), Space–time sensitivity of the Sacramento model to radargage rainfall inputs, J. Hydrol., 203, 2138.
  • Freer, J. E., H. McMillan, J. J. McDonnell, and K. J. Beven (2004), Constraining dynamic TOPMODEL responses for imprecise water table information using fuzzy rule based performance measures, J. Hydrol., 291, 254277.
  • Gerrits, A. M. J., H. H. G. Savenije, L. Hoffmann, and L. Pfister (2007), New technique to measure forest floor interception – An application in a beech forest in Luxembourg, Hydrol. Earth Syst. Sci., 311, 695701.
  • Grayson, R. B., and G. Blöschl (2000), Summary of pattern comparison and concluding remarks, In Spatial Patterns in Catchment Hydrology: Observations and Modeling, edited by R. B. Grayson, and G. Blöschl, Cambridge Univ. Press, Cambridge, 355367.
  • Gupta, H. V., S. Sorooshian, and P. O. Yapo (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res., 34, 751763.
  • Hamon, W. R. (1961), Estimating potential evapotranspiration: Proceedings of the American Soc. of Civil Eng. J. Hydraulic Division, vol. 87, no. HY3, p. 107120.
  • Herbst, M., B. Diekkrüger, and J. Vanderborght (2006), Numerical experiments on the sensitivity of runoff generation to the spatial variation of soil hydraulic properties, J. Hydrol., 326, 4358.
  • Hsu, K., H. V. Gupta, and S. Sorooshian (1995), Artificial neural network modeling of the rainfall-runoff process, Water Resour. Res., 31(10), 25172530.
  • Jakeman, A. J., and G. M. Hornberger (1993), How much complexity is warranted in a rainfall-runoff model? Water Resour. Res., 29(8), 26372649.
  • Jothityangkoon, C., M. Sivapalan, and D. Farmer (2001), Process controls of water balance variability in a large semi-arid catchment: Downward approach to hydrological model development, J. Hydrol., 254, 174198.
  • Kleissen, F. M., M. B. Beck, and H. S. Wheater (1990), The identifiability of conceptual hydrochemical models, Water. Resour. Res., 26(12), 29792992.
  • Klemes, V. (1983), Conceptualization and scale in hydrology, J. Hydrol., 65, 123.
  • Krajewski, W. F., V. Lakshmi, K. P. Georgakakos, and S. C. Jain (1991), A Monte-Carlo study of rainfall sampling effect on a distributed catchment model, Water Resour. Res., 27(1), 119128.
  • Lindström, G., B. Johansson, M. Persson, M. Gardelin, and S. Bergström (1997), Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272288.
  • Link, T. E., M. H. Unsworth, and D. Marks (2004), The dynamics of rainfall interception by a seasonal temperate rainforest, Agric. Forest Meteorol., 124, 171191.
  • Liu, Z., and E. Todini (2002), Towards a comprehensive physically-based rainfall-runoff model, Hydrol. Earth Sys. Sci., 6(5), 859881.
  • Michaud, J., and S. Sorooshian (1994), Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed, Water Resour. Res., 30(3), 593605.
  • Milly, P. C. D., and P. S. Eagleson (1988), Effect of storm scale on surface runoff volume, Water Resour. Res., 24(4), 620624.
  • Obled, C., J. Wedling, and K. Beven (1994), The sensitivity of hydrological models to spatial rainfall patterns: An evaluation using observed data, J. Hydrol., 159, 305333.
  • Perrin, C., C. Michel, and V. Andreassian (2001), Does a large number of parameters enhance model performance? Comparative assessment of common catchments model structures on 429 catchments, J. Hydrol., 242(3–4), 275301.
  • Reed, S. M., V. Koren, M. Smith, Z. Zhang, F. Moreda, and D.-J. Seo (2004), Overall distributed model intercomparison project results, J. Hydrol., 298(1–4), 2760.
  • Refsgaard, J. C., and J. Knudsen (1996), Operational validation and intercomparison of different types of hydrological models, Water Resour. Res., 32(7), 21892202.
  • Refsgaard, J. C., and B. Storm (1996), Construction, calibration and validation of hydrological models, Distributed Hydrological Modelling, edited by M. B. Abbott, and J. C. Refsgaard, Kluwer Academic Publishers, 4154.
  • Reggiani, P., and T. H. M. Rientjes (2005), Flux parameterization in the representative elementary watershed approach: Application to a natural basin, Water Resour. Res., 41, W04013, doi:10.1029/2004WR003693.
  • Reggiani, P., M. Sivapalan, and S. M. Hassanizadeh (2000), Conservation equations governing hillslope responses, Water Resour. Res., 38(7), 18451863.
  • Savenije, H. H. G. (2004), The importance of interception and why we should delete the term evapotranspiration from our vocabulary, Hydrol. Processes, 18, 15071511.
  • Schuurmans, J. M., and M. F. P. Bierkens (2007), Effect of spatial distribution of daily rainfall on interior catchment response of a distributed hydrological model, Hydrol. Earth Syst. Sci., 11, 677693.
  • Sivapalan, M., G. Blöschl, L. Zhang, and R. Vertessy (2003), Downward approach to hydrological prediction, Hydrol. Processes, 17, 21012111.
  • Smith, M. B., V. I. Korena, Z. Zhang, S. M. Reed, J. J. Pan, and F. Moreda (2004), Runoff response to spatial variability in precipitation: an analysis of observed data, J. Hydrol., 298(1–4), 267286.
  • Spear, R. C., and G. M. Hornberger (1980), Eutrophication in Peel Inlet, II, Identification of critical uncertainties via generalized sensitivity analysis, Water Res., 14, 4349.
  • Sun, X., R. G. Mein, T. D. Keenan, and J. F. Elliott (2000), Flood estimation using radar and raingauge data, J. Hydrol., 239, 418.
  • Tang, Y., P. Reed, T. Wagener, and K. van Werkhoven (2007), Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation, Hydrol. Earth Syst. Sci., 11, 793817.
  • Vaché, K. B., and J. J. McDonnell (2006), A process-based rejectionist framework for evaluating catchment runoff model structure, Water Resour. Res., 42, W02409, doi:10.1029/2005WR004247.
  • Vrugt, J. A., H. V. Gupta, L. A. Bastidas, W. Bouten, and S. Sorooshian (2003a), Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resour. Res., 39(8), 1214, doi:10.1029/2002WR001746.
  • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003b), A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters, Water Resour. Res., 39(8), 1201, doi:10.1029/2002WR001642.
  • Wagener, T., N. McIntyre, M. J. Lees, H. S. Wheater, and H. V. Gupta (2003), Towards reduced uncertainty in conceptual rainfall-runoff modeling: dynamic identifiability analysis, Hydrol. Processes, 17(2), 455476.
  • Wagener, T., H. S. Wheater, and H. V. Gupta (2004), Rainfall-runoff modelling in gauged and ungauged catchments, Imperial College Press, London, UK, 330 pp.
  • Weiler, M., and J. McDonnell (2004), Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology, J. Hydrol., 285(1–4), 318.
  • Wilson, C. B., J. B. Valdes, and I. Rodriguez-Iturbe (1979), On the influence of the spatial distribution of rainfall on storm runoff, Water Resour. Res., 15(2), 321328.
  • Winchell, M., V. H. Gupta, and S. Sorooshian (1998), On the simulation of infiltration and saturation excess runoff using radarbased rainfall estimates: effects of algorithm uncertainty and pixel aggregation, Water Resour. Res., 34(10), 26552670.
  • Young, P. C., and S. Parkinson (2002), Simplicity out of complexity, in Environmental Foresight and Models: A Manifesto, edited by M. B. Beck, Elsevier Science, The Netherlands, 251294.
  • Zhang, G. P., and H. H. G. Savenije (2005), Rainfall-runoff modelling in a catchment with a complex groundwater flow system: Application of the representative elementary watershed (REW) approach, Hydrol. Earth Syst. Sci., 9, 243259.