SEARCH

SEARCH BY CITATION

References

  • Ambroise, B. (1995), Topography and the water cycle in a temperate middle mountain environment—The need for interdisciplinary experiments, Agric. For. Meteorol., 73(3–4), 217235.
  • Arora, V. K., and G. J. Boer (2005), A parameterization of leaf phenology for the terrestrial ecosystem component of climate models, Global Change Biol., 11(1), 3959.
  • Band, L. E., P. Patterson, R. Nemani, and S. W. Running (1993), Forest ecosystem processes at the watershed scale—Incorporating hillslope hydrology, Agric. For. Meteorol., 63(1–2), 93126.
  • Ben Wu, X., and S. R. Archer (2005), Scale-dependent influence of topography-based hydrologic features on patterns of woody plant encroachment in savanna landscapes, Landscape Ecol., 20(6), 733742.
  • Blocken, B., J. Carmeliet, and J. Poesen (2005), Numerical simulation of the wind-driven rainfall distribution over small-scale topography in space and time, J. Hydrol., 315(1–4), 252273.
  • Bonan, G. B. (1996), A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide, NCAR Tech. Note NCAR/TN-417, Natl. Cent. for Atmos. Res., Boulder, Colo.
  • Breckle, S. W. (2002), Walter's Vegetation of the Earth, 527 pp., Springer, New York.
  • Caylor, K. K., S. Manfreda, and I. Rodriguez-Iturbe (2005), On the coupled geomorphological and ecohydrological organization of river basins, Adv. Water Resour., 28(1), 6986.
  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity, Clim. Dyn., 15(3), 183203.
  • Dietrich, W. E., and J. T. Perron (2006), The search for a topographic signature of life, Nature, 439(7075), 411418.
  • Dirnbock, T., R. J. Hobbs, R. J. Lambeck, and P. A. Caccetta (2002), Vegetation distribution in relation to topographically driven processes in southwestern Australia, Appl. Vegetat. Sci., 5(1), 147158.
  • Feddes, R. A. (Ed.) (1995), Space and Time Scale Variability and Interdependencies in Hydrological Processes, 193 pp., Cambridge Univ. Press, New York.
  • Florinsky, I. V., and G. A. Kuryakova (1996), Influence of topography on some vegetation cover properties, Catena, 27(2), 123141.
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine (1996), An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeoch. Cycles, 10(4), 603628.
  • Fourcade, H. G. (1942), Some notes on the effects of the incidence of rain on the distribution of rainfall over the surface of unlevel ground, Trans. R. Soc. South Afr., 29(3), 235254.
  • Franklin, J. (1998), Predicting the distribution of shrub species in southern California from climate and terrain-derived variables, J. Vegetat. Sci., 9(5), 733748.
  • Friend, A. D., A. K. Stevens, R. G. Knox, and M. G. R. Cannell (1997), A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0), Ecol. Model., 95(2–3), 249287.
  • Grant, R. (2003), Modeling topographic effects on net ecosystem productivity of boreal black spruce forests, Tree Physiol., 24, 118.
  • Grayson, R. B., I. D. Moore, and T. A. McMahon (1992), Physically based hydrologic modeling. 2. Is the concept realistic? Water Resour. Res., 28, 26592666.
  • Hamilton, E. L. (1954), Rainfall sampling on rugged terrain, Tech. Bull. U.S. Dep. Agric. 1096, 41 pp., U.S. Dep. of Agric., Washington, D.C.
  • Haxeltine, A., and I. C. Prentice (1996), BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types, Global Biogeoch. Cycles, 10(4), 693709.
  • House, J. I. and D. O. Hall (2001), Productivity of tropical savannas and grasslands, in Terrestrial Global Productivity, edited by J. Roy, B. Sangier, and H. A. Mooney, pp. 363400, Academic, San Diego, Calif.
  • Howes, D. A., and A. D. Abrahams (2003), Modeling runoff and runon in a desert shrubland ecosystem, Jornada Basin, New Mexico, Geomorphology, 53(1–2), 4573.
  • Istanbulluoglu, E., and R. L. Bras (2005), Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography, J. Geophys. Res., 110, F02012, doi:10.1029/2004JF000249.
  • Ivanov, V. Y. (2006), Effects of dynamic vegetation and topography on hydrological processes in semi-arid areas, Ph.D. thesis, Mass. Inst. of Technol., Cambridge.
  • Ivanov, V. Y., R. L. Bras, and D. C. Curtis (2007a), A weather generator for hydrological, ecological, and agricultural applications, Water Resour. Res., 43, W10406, doi:10.1029/2006WR005364.
  • Ivanov, V. Y., R. L. Bras, and E. R. Vivoni (2007b), Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A Mechanistic Approach to modeling dynamic feedbacks, Water Resour. Res., 44, W03429, doi:10.1029/2006WR005588.
  • Kim, C. P., G. D. Salvucci, and D. Entekhabi (1999), Groundwater-surface water interaction and the climatic spatial patterns of hillslope hydrological response, Hydrol. Earth Syst. Sci., 3(3), 375384.
  • Kirkby, M. (1995), Modeling the links between vegetation and landforms, Geomorphology, 13(1–4), 319335.
  • Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice (2005), A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.
  • Kucharik, C. J., J. A. Foley, C. Delire, V. A. Fisher, M. T. Coe, J. D. Lenters, C. Young-Molling, N. Ramankutty, J. M. Norman, and S. T. Gower (2000), Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure, Global Biogeochem. Cycles, 14(3), 795825.
  • Larcher, W. (2003), Physiological Plant Ecology, 4th ed., 513 pp., Springer, New York.
  • Levine, J. B., and G. D. Salvucci (1999), Equilibrium analysis of groundwater-vadose zone interactions and the resulting spatial distribution of hydrologic fluxes across a Canadian prairie, Water Resour. Res., 35(5), 13691383.
  • Levis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson (2004), The Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical description and user's guide, Tech. Note NCAR/TN-459+IA, Natl. Cent. for Atmos. Res., Boulder, Colo.
  • Long, S. P., E. Garcia Moya, S. K. Imbamba, A. Kamnalrut, M. T. F. Piedade, J. M. O. Scurlock, Y. K. Shen, and D. O. Hall (1989), Primary productivity of natural grass ecosystems of the tropics: A reappraisal, Plant Soil, 115, 155166.
  • Long, S. P., M. B. Jones, and M. J. Roberts (1992), Primary Productivity of Grass Ecosystems of the Tropics and Sub-tropics, 267 pp., Chapman and Hall, London.
  • Ludwig, J. A., B. P. Wilcox, D. D. Breshears, D. J. Tongway, and A. C. Imeson (2005), Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes, Ecology, 86(2), 288297.
  • Mackay, D. S. (2001), Evaluation of hydrologic equilibrium in a mountainous watershed: Incorporating forest canopy spatial adjustment to soil biogeochemical processes, Adv. Water Resour., 24(9–10), 12111227.
  • Mackay, D. S., and L. E. Band (1997), Forest ecosystem processes at the watershed scale: Dynamic coupling of distributed hydrology and canopy growth, Hydrol. Proc., 11(9), 11971217.
  • Meentemeyer, R. K., A. Moody, and J. Franklin (2001), Landscape-scale patterns of shrub-species abundance in California chaparral - the role of topographically mediated resource gradients, Plant Ecol., 156(1), 1941.
  • Moore, I. D. (1981), Effect of surface sealing on infiltration, Trans. ASAE, 24(6), 15461552.
  • Noy-Meir, I. (1973), Desert ecosystems: Environment and producers, Annu. Rev. Ecol. Syst., 4, 2551.
  • Owe, M., K. Brubaker, J. Ritchie, and A. Rango (2001), Remote Sensing and Hydrology 2000, 624 pp., IAHS Press, Geneva, Switzerland.
  • Poesen, J. W. A. (1987), The role of slope angle in surface seal formation, in International Geomorphology 1986. Part II, edited by V. Gardiner, pp. 437448, John Wiley, Chichester, U.K.
  • Poesen, J. W. A. (1992), Mechanisms of overland-flow generation and sediment production on loamy sand soils and sandy soils with and without rock fragments, in Overland Flow: Hydraulics and Erosion Mechanics. edited by A. J. Parsons and A. D. Abrahams, pp. 275305, UCL Press, London.
  • Protopapas, A. L., and R. L. Bras (1987), A model for water-uptake and development of root systems, Soil Sci., 144(5), 352366.
  • Protopapas, A. L., and R. L. Bras (1988), State-space dynamic hydrological modeling of soil-crop-climate interactions, Water Resour. Res., 24(10), 17651779.
  • Ragab, R., J. Bromley, P. Rosier, J. D. Cooper, and J. H. C. Gash (2003), Experimental study of water fluxes in a residential area: 1. Rainfall, roof runoff and evaporation: The effect of slope and aspect, Hydrol. Proc., 17(12), 24092422.
  • Rawls, W. J., D. L. Brakensiek, and K. E. Saxton (1982), Estimation of soil-water properties, Trans. ASAE, 25(5), 13161320.
  • Ridolfi, L., P. D'Odorico, A. Porporato, and I. Rodriguez-Iturbe (2003), Stochastic soil moisture dynamics along a hillslope, J. Hydrol., 272(1–4), 264275.
  • Rodriguez-Iturbe, I., A. Porporato, L. Ridolfi, V. Isham, and D. R. Cox (1999), Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation, Proc. R. Soc. London, Ser. A, 455(1990), 37893805.
  • Schmugge, T. J., W. P. Kustas, J. C. Ritchie, T. J. Jackson, and A. Rango (2002), Remote sensing in hydrology, Adv. Water Resour., 25, 13671385.
  • Sellers, P. J., S. O. Los, C. J. Tucker, C. O. Justice, D. A. Dazlich, G. J. Collatz, and D. A. Randall (1996), A revised land surface parameterization (SiB2) for atmospheric GCMs. 2. The generation of global fields of terrestrial biophysical parameters from satellite data, J. Clim., 9(4), 706737.
  • Sharon, D. (1980), Distribution of hydrologically effective rainfall incident on sloping ground, J. Hydrol., 46(1–2), 165188.
  • Sharon, D., and A. Arazi (1997), The distribution of wind-driven rainfall in a small valley: An empirical basis for numerical model verification, J. Hydrol., 201(1–4), 2148.
  • Storey, H. C., and E. L. Hamilton (1943), A comparative study of rain-gages, Eos Trans. AGU, 24, 133141.
  • Tilman, D. (1982). Resource Competition and Community Structure, 296 pp., Princeton Univ. Press, Princeton, N. J.
  • Tucker, G. E., and R. L. Bras (2000), A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, Water Resour. Res., 36(7), 19531964.
  • Tucker, G. E., S. T. Lancaster, N. M. Gasparini, and R. L. Bras (2001), The Channel-Hillslope Integrated Landscape Development (CHILD) model, in Landscape Erosion and Sedimentation Modeling, edited by R. S. Harmon, and W. W. Doe, pp. 349388, Kluwer, New York.
  • Vertessy, R. A., T. J. Hatton, R. G. Benyon, and W. R. Dawes (1996), Long-term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration, Tree Physiol., 16(1–2), 221232.
  • Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier (1994), A distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 30(6), 16651679.