SEARCH

SEARCH BY CITATION

References

  • Beven, K. (1989), Changing ideas in hydrology - The case for physically-based models, J. Hydrol., 105, 157172.
  • Beven, K. (1993), Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Res., 16, 4151.
  • Beven, K. (1996a), Equifinality and uncertainty in geomorphological modeling, in The Scientific Nature of Geomorphology, edited by B. L. Rhoads, and C. E. Thorn, pp. 289313, Wiley, Chichester, UK.
  • Beven, K. J. (1996b), A discussion of distributed hydrological modelling, in Distributed Hydrological Modelling, edited by M. B. Abbott, and J. C. Refsgaard, pp. 255278, Kluwer, The Netherlands.
  • Beven, K. (2000), On the future of distributed modelling in hydrology, Hydrol. Processes, 14, 31833184.
  • Beven, K. (2001a), How far can we go in distributed hydrological modeling? Hydrol. Earth Syst. Sci., 5, 112.
  • Beven, K. (2001b), On explanatory depth and predictive power, Hydrol. Processes, 15, 30693072.
  • Beven, K. (2002a), Towards a coherent philosophy for modelling the environment, Proc. R. Soc. London, Ser. A: Math. and Phys. Sci., 458, 24652484.
  • Beven, K. (2002b), Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Processes, 16, 189206.
  • Beven, K. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320, 1836.
  • Beven, K., and A. Binley (1992), The future of distributed models: model calibration and uncertainty prediction, Hydrol. Processes, 6, 279298.
  • Di Iorio, T. A. (2003), Impact of surficial contaminant loadings on streamwater quality in an integrated surface-subsurface hydrologic modelling environment, M.Sc. thesis, 92 pp., Univ. of Waterloo, Waterloo, Ont., Canada.
  • Ebel, B. A., and K. Loague (2006), Physics-based hydrologic response simulation: Seeing through the fog of equifinality, Hydrol. Processes, 20(13), 28872900.
  • Environment Canada, Canadian Daily Climate Data, 1880–2000 (2003), Atmospheric and Environmental Service Ontario.
  • Freeze, R. A., and J. C. Cherry (1979), Groundwater, Prentice Hall, Englewood Cliffs, New Jersey.
  • Freeze, R. A., and R. L. Harlan (1969), Blueprint for a physically-based digitally-simulated hydrologic response model, J. Hydrol., 9, 237258.
  • Gautry, S. J. (1996), The hydrostratigraphy of the Waterloo Moraine, M.Sc. thesis, 308 pp., Univ. of Waterloo, Waterloo, Ont., Canada.
  • Grayson, R. B., I. D. Moore, and T. A. McMahon (1992), Physically based hydrologic modeling, 2. Is the concept realistic? Water Resour. Res., 28, 26592666.
  • Heppner, C. S., Q. Ran, J. E. VanderKwaak, and K. Loague (2006), Adding sediment transport to the integrated hydrology model (InHM): Development and testing, Adv. Water Res., 29(6), 930943.
  • HydroGeoLogic (2000), MODHMS: A comprehensive MODFLOW-based hydrologic modeling system, Version 1.1. Code Documentation and User's Guide, HydroGeoLogic Incorporated, Herndon, VA.
  • Jones, J. P., E. A. Sudicky, A. E. Brookfield, and Y.-J. Park (2006), An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow, Water Resour. Res., 42, W02407, doi:10.1029/2005WR004130.
  • Jyrkama, M. I., and J. F. Sykes (2006), Sensitivity and uncertainty of the recharge boundary condition, Water Resour. Res., 42, W01404, doi:10.1029/2005WR004408.
  • Jyrkama, M. I., J. F. Sykes, and S. D. Normani (2002), Recharge estimation for transient ground water modeling, Ground Water, 40(6), 638648.
  • Karrow, P. (1989), Quaternary geology of the Great Lakes Subregion, in Quaternary Geology of Canada and Greenland, edited by R. Fulton, Geology of Canada, no. 1, Geological Survey of Canada, Department of Energy, Mines and Resources, Ottawa, Ontario.
  • Karrow, P., W. Cowan, A. Dreimanis, and S. Singer (1978), Middle Wisconsinan stratigraphy in southern Ontario, in Toronto '78, Field Trips Guidebook, Geological Association of Canada – Geological Society of America – Mineralogical Association of Canada, 17–27.
  • Li, Q., A. J. A. Unger, E. A. Sudicky, K. Kassenar, E. J. Wexler, and S. Shikaze (2006), A physically-based hydrologic model of the Duffins Creek Watershed: Demonstration of the fully-integrated HydroGeoSphere model in three-dimensions, submitted to J. Hydrol.
  • Loague, K., and J. E. VanderKwaak (2002), Simulating hydrological response for the R-5 catchment: Comparison of two models and the impact of roads, Hydrol. Processes, 16(5), 10151032.
  • Loague, K., and J. E. VanderKwaak (2004), Physics-based hydrological response simulation: platinum bridge, 1958 Edsel, or useful tool, Hydrol. Processes, 18, 29492956.
  • Loague, K., C. S. Heppner, R. H. Abrams, A. E. Carr, J. E. VanderKwaak, and B. A. Ebel (2005), Further testing of the Integrated Hydrology Model (InHM): Event-based simulations for a small rangeland catchment located near Chickasha, Oklahoma, Hydrol. Processes, 19(7), 13731398.
  • Loague, K., C. S. Heppner, B. B. Mirus, B. A. Ebel, A. E. Carr, S. H. BeVille, and J. E. VanderKwaak (2006), Physics-based hydrologic-response simulation: foundation for hydroecology and hydrogeomorphology, Hydrol. Processes, 20, 12311237.
  • Mace, A., D. L. Rudolph, and R. G. Kachonoski (1998), Suitability of parametric models to describe the hydraulic properties of an unsaturated coarse sand and gravel, Ground Water, 36, 465475.
  • Martin, P. J. (1994), Modeling of the North Waterloo multi-aquifer system, M.Sc. thesis, 103 pp., Univ. of Waterloo, Waterloo, Ont., Canada.
  • Martin, P. J., and E. O. Frind (1998), Modeling a complex multi-aquifer system: The Waterloo Moraine, Ground Water, 36(4), 679690.
  • McCuen, R. (1989), Hydrologic Analysis and Design, Prentice Hall, Englewood Cliffs, New Jersey.
  • Mercer, J. W., S. D. Thomas, and B. Ross (1982), Parameters and variables appearing in repository siting models, U.S. Nuclear Regulatory Commission, NUREG/CR-3066.
  • Morgan, A., B. Branfireun, and F. Csillag (2004), An evaluation of the contributions of urbanization and climatic change to runoff characteristics in the Laurel Creek Watershed, Ontario, Can. Water Res. J., 29(3), 171182.
  • Ogden, F., and P. Julien (1993), Runoff sensitivity to temporal and spatial rainfall variability at runoff plane and small basin scales, Water Resour. Res., 29, 25892597.
  • Panday, S., and P. S. Huyakorn (2004), A fully coupled physically-based spatially-distributed model for evaluation surface/subsurface flow, Adv. Water Res., 27, 361382.
  • Pawley, J. D., R. N. Dutton, R. N. Farvolden, F. Iliffe, J. Kao, and J. Viirland (1976), The report of the Grand River induced infiltration committee, Univ. of Waterloo, Waterloo, Ont., Canada.
  • Pebesma, E. J., P. Switzer, and K. Loague (2005), Error analysis for the evaluation of model performance: rainfall-runoff event time series data, Hydrol. Processes, 19(8), 15291548.
  • Radcliffe, A. J. (2000), Physical hydrogeology and the impact of urbanization at the Waterloo west side: a groundwater modelling approach, M.Sc. thesis, 152 pp., Univ. of Waterloo, Waterloo, Ont., Canada.
  • Refsgaard, J. C., B. Storm, and M. B. Abbott (1996), Comment on ‘A discussion of distributed hydrological modelling’ by K. Beven, in Distributed Hydrological Modelling, edited by M. B. Abbott, and J. C. Refsgaard, pp. 279287, Kluwer, The Netherlands.
  • Schaap, M., F. J. Liej, and Th. M. van Genuchten (1999), A bootstrap-neural network approach to predict soil hydraulic parameters, in Characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, pp. 12371250, edited by M. Th. van Genuchten, F. J. Leij, and L. Wu, Univ. of California, Riverside, CA.
  • Smith, R. E., D. R. Goodrich, D. A. Woolhiser, and J. R. Simanton (1994), Comment on ‘Physically based hydrologic modelling, 2. Is the concept realistic?’ by R. B. Grayson, I. D. Moore, and T. A. McMahon, Water Resour. Res., 30, 851854.
  • Sudicky, E. A., J. P. Jones, D. S. Brunner, R. G. McLaren, and J. E. VanderKwaak (2000), A fully-coupled model of surface and subsurface water flow: Model overview and application to the Laurel Creek Watershed Proc. XIII International Conference on Computational Methods in Water Resources, Calgary, Alberta.
  • Therrien, R., R. G. McLaren, E. A. Sudicky, and S. M. Panday (2005), HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport, 322 pp., Groundwater Simulations Group, Univ. of Waterloo, Waterloo, Ont., Canada.
  • Tiedeman, C. R., D. J. Goode, and P. A. Hsieh (1998), Characterizing a ground water basin in a New England mountain and valley terrain, Ground Water, 36, 611620.
  • VanderKwaak, J. E. (1999), Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems, Ph.D. thesis, 217 pp., Univ. of Waterloo, Waterloo, Ont., Canada.
  • VanderKwaak, J. E., and K. Loague (2001), Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model, Water Resour. Res., 37, 9991013.