SEARCH

SEARCH BY CITATION

References

  • Abbott, M. B., J. A. Bathurst, and P. E. Cunge (1986a), An introduction to the European Hydrological System–Systeme Hydrologicque Europeen “SHE”: part 1. History and philosophy of a physically based distributed modeling system, J. Hydrol., 87, 4559.
  • Abbott, M. B., J. A. Bathurst, and P. E. Cunge (1986b), An introduction to the European Hydrological System–Systeme Hydrologicque Europeen “SHE”: part 2. Structure of a physically based distributed modeling system, J. Hydrol., 87, 6177.
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration, FAO Irrig. Drain. Pap. 56, United Nations Food and Agric. Organ., Rome.
  • Amerman, C. R. (1965), The use of unit-source watershed data for runoff prediction, Water Resour. Res., 1(4), 499508.
  • Ascher, U. M., and L. R. Petzold (1998), Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations, Soc. for Ind. and Appl. Math., Philadelphia, Pa.
  • Beven, K. (2006), Searching for the holy grail of scientific hydrology: Qt = H(SR)A as closure, Hydrol. Earth Syst. Sci. Discuss., 3, 769792.
  • Bierkens, M. F. P. (1998), Modeling water table fluctuations by means of a stochastic differential equation, Water Resour. Res., 34(10), 24852499.
  • Brandes, D. (1998), A low-dimensional dynamical model of hillslope soil moisture, with application to a semiarid field site, Ph.D. thesis, Pa. State Univ., University Park.
  • Bras, R. L. (1990), Hydrology: An Introduction to Hydrologic Science, Addison-Wesley, Boston, Mass.
  • Brooks, R. H., and A. T. Corey (1964), Hydraulic properties of porous media, Hydrol. Pap. 3, Colo. State Univ., Fort Collins.
  • Cohen, S. D., and A. C. Hindmarsh (1994), CVODE user guide, Rep. UCRL-MA-118618, Numer. Math. Group, Lawrence Livermore Natl. Lab., Livermore, Calif.
  • Crawford, N. H., and R. K. Linsley (1966), Digital simulation on hydrology: Stanford Watershed Model IV, Stanford Univ. Tech. Rep. 39, Stanford Univ., Palo Alto, Calif.
  • Delanunay, B. (1934), Sur la sphere vide, Bull. Acad. Sci. USSR Class Sci. Math. Nat., 7(6), 793800.
  • Dingman, S. L. (1994), Physical Hydrology, Prentice-Hall, Upper Saddle River, N. J.
  • Du, Q., V. Faber, and M. Gunzburger (1999), Centroidal Voronoi tessalations: Applications and algorithms, SIAM Rev., 41(4), 637676.
  • Duffy, C. J. (1996), A two-state integral-balance model for soil moisture and groundwater dynamics in complex terrain, Water Resour. Res., 32(8), 24212434.
  • Duffy, C. J. (2004), Semi-discrete dynamical model for mountain-front recharge and water balance estimation, Rio Grande of southern Colorado and New Mexico, in Groundwater Recharge in a Desert Environment: The Southwestern United States, Water Sci. Appl. Ser., vol. 9, edited by J. F. Hogan et al., pp. 255271, AGU, Washington, D. C.
  • Dunne, T., and R. D. Black (1970a), An experimental investigation of runoff production in permeable soils, Water Resour. Res., 6(2), 478490.
  • Dunne, T., and R. D. Black (1970b), Partial area contributions to storm runoff in a small New England watershed, Water Resour. Res., 6(5), 12961311.
  • Freeze, R. A., and R. L. Harlan (1969), Blueprint for a physically-based, digitally-simulated hydrologic response model, J. Hydrol., 9, 237258.
  • Gardner, W. R. (1958), Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table, Soil Sci., 85, 228232.
  • Gottardi, G., and M. Venutelli (1993), A control-volume finite-element model for two-dimensional overland flow, Adv. Water Resour., 16, 277284.
  • Hauser, G. E. (2003), River modeling system user guide and technical reference, report, Tenn. Valley Auth., Norris, Tenn.
  • Kristensen, K. J., and S. E. Jensen (1975), A model for estimating actual evapotranspiration from potential evapotranspiration, Nord. Hydrol., 6, 170188.
  • LaBolle, E. M., A. A. Ayman, and E. F. Graham (2003), Review of the integrated groundwater and surface-water model (IGSM), Ground Water, 41(2), 238246.
  • Leveque, R. J. (2002), Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press, New York.
  • Lynch, J. A. (1976), Effects of antecedent moisture on storage hydrographs, Ph.D. thesis, 192 pp., Dep. of Forestry, Pa. State Univ., University Park.
  • Lynch, J. A., and W. Corbett (1985), Source-area variability during peakflow, in watershed management in the 80's, J. Irrig. Drain. Eng., 300307.
  • Madsen, N. K. (1975), The method of lines for the numerical solution of partial differential equations, in Proceedings of the SIGNUM Meeting on Software for Partial Differential Equations, pp. 57, ACM Press, New York.
  • Maidment, D. R. (2002), Arc Hydro: GIS for Water Resources, 140 pp., ESRI Press, Redlands, Calif.
  • Palacios-Velez, O. L., and B. Duevas-Renaud (1986), Automated river-course, ridge and basin delineation from digital elevation data, J. Hydrol., 86, 299314.
  • Palacios-Velez, O., W. Gandoy-Bernasconi, and B. Cuevas-Renaud (1998), Geometric analysis of surface runoff and the computation order of unit elements in distributed hydrological models, J. Hydrol., 211, 266274.
  • Panday, S., and P. S. Huyakorn (2004), A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow, Adv. Water Resour., 27, 361382.
  • Polis, M. F., and D. M. McKeown (1993), Issues in iterative TIN generation to support large scale simulations, paper presented at 11th International Symposium on Computer Assisted Cartography (AUTOCARTO11), Minneapolis, Minn.
  • Post, D. E., and L. G. Votta (2005), Computational science demands a new paradigm, Phys. Today, 58(1), 3541.
  • Qu, Y. (2005), An integrated hydrologic model for multi-process simulation using semi-discrete finite volume approach, Ph.D. thesis, 136 pp., Civ. and Environ. Eng. Dep., Pa. State Univ., Univ. Park.
  • Reggiani, P., and T. H. M. Rientjes (2005), Flux parameterization in the representative elementary watershed approach: Application to a natural basin, Water Resour. Res., 41, W04013, doi:10.1029/2004WR003693.
  • Reggiani, P., M. Sivapalan, and M. Hassanizadeh (1998), A unifying framework for watershed thermodynamics: Balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics, Adv. Water Res., 22, 367398.
  • Reggiani, P., M. Hassanizadeh, M. Sivapalan, and W. G. Gray (1999), A unifying framework for watershed thermodynamics: Constitutive relationships, Adv. Water Res., 23, 1539.
  • Shewchuk, J. R. (1997), Delaunay refinement mesh generation, Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh, Pa.
  • Sivapalan, M., C. Jothityangkoon, and M. Menabde (2002), Linearity and non-linearity of basin response as a function of scale: Discussion of alternative definitions, Water Resour. Res., 38(2), 1012, doi:10.1029/2001WR000482.
  • Slattery, J. (1978), Momentum, Energy, and Mass Transfer in Continua, Krieger, Melbourne, Fla.
  • Sleigh, P. A., P. H. Gaskell, M. Berzins, and N. G. Wright (1998), An unstructured finite-volume algorithm for predicting flow in rivers and estuaries, Comput. Fluids, 27(4), 479508.
  • Tarboton, D. G., R. L. Bras, and I. Rodriguez-Iturbe (1991), On the extraction of channel networks from digital elevation data, Hydrol. Processes, 5, 81100.
  • VanderKwaak, J. E., and K. Loague (2001), Hydrologic response simulations for the R-5 catchment with a comprehensive physics-based model, Water Resour. Res., 37(4), 9991013.
  • van Genuchten, M. T. (1980), A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898.
  • Vivoni, E. R., V. Y. Ivanov, R. L. Bras, and D. Entekhabi (2004), Generation of triangulated irregular networks based on hydrological similarity, J. Hydrol. Eng., 9(4), 288302.
  • Voronoi, G. (1907), Nouvelles applications des paramètres continus à la théorie des formes quadratiques, J. Reine Angewandte Math., 133, 97178.
  • Yeh, G. T., H. P. Cheng, J. R. Cheng, H. C. Lin, and W. D. Martin (1998), A numerical model simulating water flow, contaminant and sediment transport in a watershed systems of 1-D stream-river network, 2-D overland regime, and 3-D subsurface media (WASH123D: Version 1.0), Tech. Rep. CHL-98-19, U. S. Environ. Prot. Agency Environ. Res. Lab., Athens, Ga.