SEARCH

SEARCH BY CITATION

References

  • Allison, C. E., R. J. Francey, and P. B. Krummel (2003), δ13C in CO2 from sites in the CSIRO Atmospheric Research GASLAB air sampling network, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dept. of Energy, Oak Ridge, Tenn.
  • Anderson, W. T., S. M. Bernasconi, J. A. McKenzie, and M. Saurer (1998), Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): An example from central Switzerland (1913–1995), J. Geophys. Res., 103, 31,62531,636.
  • Aykroyd, R. G., D. Lucy, A. M. Pollard, A. H. C. Carter, and I. Robertson (2001), Temporal variability in the strength of proxy-climate correlations, Geophys. Res. Lett., 28, 15591562.
  • Barber, V. A., G. P. Juday, and B. P. Finney (2000), Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress, Nature, 405, 668673.
  • Barbour, M. M., J. S. Roden, G. D. Farquhar, and J. R. Ehleringer (2004), Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect, Oecologia, 138, 426435.
  • Bartholomay, G. A., R. T. Eckert, and K. T. Smith (1997), Reductions in tree ring widths of white pine following ozone exposure at Acadia National Park, Can. J. For. Res., 27, 361368.
  • Biondi, F. (2000), Are climate-tree growth relationships changing in north-central Idaho, USA? Arct. Antarct. Alp. Res., 32, 111116.
  • Biondi, F., and K. Waikul (2004), DENDROCLIM 2004: A C++ program for statistical calibration of climate signals in tree ring chronologies, Comput. Geosci., 30, 303311.
  • Borella, S., M. Leuenberger, M. Saurer, and R. Siegwolf (1998), Reducing uncertainties in δ13C analysis of tree rings: Pooling, milling and cellulose extraction, J. Geophys. Res., 103, 19,51919,526.
  • Böttger, T., et al. (2007), Wood cellulose preparation methods and mass spectrometric analysis of δ13C, δ18O and non-exchangeable δ2H values in cellulose, sugar and starch: An inter-laboratory comparison, Anal. Chem., 79(12), 46034612.
  • Bowen, G. J., and B. Wilkinson (2002), Spatial distribution of δ18O in meteoric precipitation, Geology, 30, 315318.
  • Brázdil, R., C. Pfister, H. Wanner, H. von Storch, and J. Luterbacher (2005), Historical climatology in Europe: The state of the art, Clim. Change, 70, 363430.
  • Briffa, K. R., F. H. Schweingruber, P. D. Jones, T. J. Osborn, I. C. Harris, S. G. Shiyatov, E. A. Vaganov, and H. Grudd (1998), Trees tell of past climates: But are they speaking less clearly today? Philos. Trans. R. Soc. London, Ser. B, 353, 6573.
  • Briffa, K. R., T. J. Osborn, and F. H. Schweingruber (2004), Large-scale temperature inferences from tree rings: A review, Global Planet. Change, 40, 1126.
  • Büntgen, U., D. C. Frank, M. Schmidhalter, B. Neuwirth, M. Seifert, and J. Esper (2006), Growth/climate response shift in a long subalpine spruce chronology, Trees Struct. Funct., 20, 99110.
  • Carrer, M., and C. Urbinati (2001), Assessing climate-growth relationships: A comparative study between linear and non-linear methods, Dendrochronologia, 19, 5765.
  • Carrer, M., and C. Urbinati (2004), Age-dependent tree ring growth responses to climate in Larix deciduas and Pinus cembra, Ecology, 85, 730740.
  • Carrer, M., and C. Urbinati (2006), Long-term change in the sensitivity of tree ring growth to climate forcing of Larix deciduas, New Phytol., 170, 861872.
  • Casty, C., H. Wanner, J. Luterbacher, J. Esper, and R. Boehm (2005), Temperature and precipitation variability in the European Alps since 1500, Int. J. Climatol., 25, 18551880.
  • Cole, J. E., D. Rind, R. S. Webb, J. Jouzel, and R. Healy (1999), Climatic controls on interannual variability of precipitation δ18O: Simulated influence of temperature, precipitation amount, and water source region, J. Geophys. Res., 104, 14,22314,235.
  • Crowley, T. J., and K. Y. Kim (1996), Comparison of proxy records of climate change and solar forcing, Geophys. Res. Lett., 23, 359362.
  • Dansgaard, W. (1964), Stable isotopes in precipitation, Tellus, 16, 436468.
  • D'Arrigo, R., R. Wilson, and G. Jacoby (2006), On the long-term context for late 20th century warming, J. Geophys. Res., 111, D03103, doi:10.1029/2005JD006352.
  • Dickmann, D. I., and T. T. Kozlowski (1970), Mobilisation and incorporation of photoassimilated 14C by growing vegetative and reproductive tissues of adult Pinus resinosa Ait. trees, Plant Physiol., 45, 284288.
  • Drake, B. G., M. A. Gonzalez Meler, and S. P. Long (1997), More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 609639.
  • Edwards, T. W. D., and P. Fritz (1986), Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: Paleoclimatic implications for southern Ontario, Canada, Appl. Geochem., 1(6), 715723.
  • Edwards, T. W. D., W. Graf, P. Trimborn, W. Stichler, J. Lipp, and H. D. Payer (2000), δ13C response surface resolves humidity and temperature signals in trees, Geochim. Cosmochim, Acta, 64, 161167.
  • Esper, J., E. R. Cook, and F. H. Schweingruber (2002), Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability, Science, 295(5563), 22502253.
  • Esper, J., D. C. Frank, R. J. S. Wilson, and K. R. Briffa (2005), Effect of scaling and regression on reconstructed temperature amplitude for the past millennium, Geophys. Res. Lett., 32, L07711, doi:10.1029/2004GL021236.
  • Farquhar, G. D., M. H. O'Leary, and J. A. Baxter (1982), On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol., 9, 121137.
  • Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick (1989), Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 503537.
  • Feng, X. (1998), Long term ci/ca response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies, Oecologia, 117, 1925.
  • Francey, R. J., and G. D. Farquhar (1982), An explanation of 13C/12C variations in tree rings, Nature, 297, 2831.
  • Francey, R. J., C. E. Allison, D. M. Etheridge, C. M. Trudinger, I. G. Enting, M. Leuenberger, R. L. Langenfelds, E. Michel, and L. P. Steele (1999), A 1000 year high precision record of δ18O in atmospheric CO2, Tellus, Ser. B, 51, 170193.
  • Fritts, H. C. (1976), Tree Rings and Climate, 567 pp., Academic, London.
  • Gagen, M., and D. McCarroll (2004), Latewood width, maximum density, and stable carbon isotope ratios of pine as climate indicators in a dry subalpine environment, French Alps, Arct. Antarct. Alp. Res., 36, 166171.
  • Glerum, C. (1980), Food sinks and food reserves of trees in temperate climates, N. Z. J. For. Sci., 10, 176185.
  • Grootes, P. M., and M. Stuiver (1997), Oxygen 18/16 variability in Greenland snow and ice with 103–105-year time resolution, J. Geophys. Res., 102, 26,45526,470.
  • Guiot, J. (1991), The bootstrapped response function, Tree Ring Bull., 51, 3941.
  • Hoffmann, G., J. Jouzel, and V. Masson (2000), Stable water isotopes in atmospheric general circulation models, Hydrol. Proc., 14(8), 13851406.
  • Holmes, R. L. (1983), Computer-assisted quality control in tree-ring dating and measurement, Tree Ring Bull., 43, 6978.
  • Hurrel, J. M., and H. van Loon (1997), Decadal variations in climate associated with the North Atlantic Oscillation, Clim. Change, 36, 301326.
  • International Atomic Energy Agency (IAEA) (1992), Statistical treatment of data on environmental isotopes in precipitation, Tech. Rep. Ser., 331, ,784 pp., Int. At. Energy Agency (IAEA), Vienna.
  • IPCC (2001), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. Houghton et al., 881 pp., Cambridge Univ. Press, Cambridge, UK. (available at http://www.ipcc.ch).
  • IPCC (2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers, 21 pp., IPCC Secretariat, Geneva, Switzerland. (Available at http://www.ipcc.ch).
  • Keeling, C. D., J. F. S. Chin, and T. P. Whorf (1996), Increased activity of northern vegetation inferred from atmospheric CO2 measurements, Nature, 382, 146149.
  • Knapp, P. A., and P. T. Soule (2001), Detecting potential regional effects of increased atmospheric CO2 on growth rates of western juniper, Global Change Biol., 7, 903917.
  • Krol, M., V. M. Hurry, D. P. Maxwell, L. Malek, A. G. Ivanov, and N. P. A. Huner (2002), Low growth temperature inhibition of photosynthesis in cotyledons of jack pine seedlings (Pinus banksiana) is due to impaired chloroplast development, Can. J. Bot., 80, 10421051.
  • La Marche, V. C., D. A. Graybill Jr., H. C. Fritts, and M. R. Rose (1984), Increasing atmospheric carbon dioxide: Tree ring evidence for growth enhancement in natural vegetation, Science, 225, 10191021.
  • Larcher, W. (1975), Physiological Plant Ecology, ,513 pp., Springer, New York.
  • Lean, J., J. Beer, and R. Bradley (1995), Reconstruction of solar irradiance since 1610: Implications for climate change, Geophys. Res. Lett., 22, 31953198.
  • Leavitt, S. W., and A. Long (1984), Sampling strategy for stable carbon isotope analysis of tree-rings in pine, Nature, 311, 145147.
  • Leavitt, S. W., and A. Long (1988), Stable carbon isotope chronologies from trees in the southwestern United States, Global Biogeochem. Cycles, 2, 189198.
    Direct Link:
  • Leuenberger, M., U. Siegenthaler, and C. C. Langway (1992), Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core, Nature, 357, 488490.
  • Loader, N. J., I. Robertson, A. C. Barker, V. R. Switsur, and J. S. Waterhouse (1997), An improved technique for the batch processing of small whole wood samples to α-cellulose, Chem. Geol., 136, 313317.
  • Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner (2004), European seasonal and annual temperature variability, trends, and extremes since 1500, Science, 303, 14991503.
  • McCarroll, D., and N. J. Loader (2004), Stable isotopes in tree rings, Quat. Sci. Rev., 23, 771801.
  • McCarroll, D., and F. Pawellek (2001), Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies, Holocene, 11, 517526.
  • Mitchell, T. D., and P. D. Jones (2005), An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693712.
  • Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, and W. Karlén (2005), Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613617.
  • Pilcher, J. R. (1995), Biological considerations in the interpretation of stable isotope ratios in oak tree rings, in Problems of Stable Isotopes in Tree Rings, Lake Sediments and Peat-Bogs as Climatic Evidence for the Holocene, edited by B. Frenzel et al., Paleoclim. Res., 15, 7196.
  • Robertson, I., J. Rolfe, V. R. Switsur, A. H. C. Carter, M. A. Hall, A. C. Barker, and J. S. Waterhouse (1997), Signal strength and climate relationships in the 13C/12C ratios of tree ring cellulose from oak in southwest Finland, Geophys. Res. Lett., 24, 14871490.
  • Roig, F. A., R. Siegwolf, and J. A. Boninsegna (2006), Stable oxygen isotopes (δ18O) in Austrocedrus chiulensis tree rings reflect climate variability in northwestern Patagonia, Argentina, Int. J. Biometeorol., 51, 97105.
  • Rozanski, K., L. Arguas-Arguas, and R. Gonfiantini (1993), Isotopic patterns in modern global precipitation, in Climate Change in Continental Isotopic Records, Geophys. Monogr. Ser., vol. 78, edited by P. K. Swart et al., pp. 136, AGU, Washington, D. C.
  • Saurer, M., and R. Siegwolf (2004), Pyrolysis techniques for oxygen isotope analysis of cellulose, in Handbook of Stable Isotope Analytical Techniques, , vol. I, , edited by P. A. de Groot, pp. 497508, Elsevier, New York.
  • Saurer, M., U. Siegenthaler, and F. Schweingruber (1995), The climate-carbon isotope relationship in tree rings and the significance of site conditions, Tellus, Ser. B, 47, 320330.
  • Saurer, M., K. Aellen, and R. Siegwolf (1997a), Correlating δ18C and δ18O in cellulose of trees, Plant Cell Environ., 20, 15431550.
  • Saurer, M., S. Borella, F. H. Schweingruber, and R. T. W. Siegwolf (1997b), Stable carbon isotopes in tree rings of beech: Climatic versus site-related influences, Trees Struct. Funct., 11, 291297.
  • Saurer, M., F. Schweingruber, E. A. Vaganov, S. G. Shiyatov, and R. Siegwolf (2002), Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia, Geophys. Res. Lett., 29(9), 1296, doi:10.1029/2001GL013739.
  • Saxe, H., M. G. R. Cannell, Ø. Johnsen, M. G. Ryan, and G. Vourlitis (2001), Tree and forest functioning in response to global warming, New Phytol., 149, 369400.
  • Schleser, G. H., and R. Jayasekera (1985), δ13C variations in leaves of a forest as an indication of reassimilated CO2 from the soil, Oecologia, 65, 536542.
  • Schleser, G. H., G. Helle, A. Lücke, and H. Vos (1999), Isotope signals as climate proxies: The role of transfer functions in the study of terrestrial archives, Quat. Sci. Rev., 18, 927943.
  • Siegenthaler, U., and H. Oeschger (1980), Correlation of 18O in precipitation with temperature and altitude, Nature, 285, 314317.
  • Switsur, R., and J. Waterhouse (1998), Stable isotopes in tree ring cellulose, in Stable Isotopes, , edited by H. Griffiths, pp. 303321, Bios Scientific, Oxford.
  • Teranes, J. L., and J. A. McKenzie (2001), Lacustrine oxygen isotope record of 20th century climate change in central Europe: Evaluation of climatic controls on oxygen isotopes in precipitation, J. Paleolimnol., 26, 131146.
  • Treydte, K., G. H. Schleser, F. H. Schweingruber, and M. Winiger (2001), The climatic significance of δ18O in subalpine spruces (Lötschental, Swiss Alps): A case study with respect to altitude, exposure and soil moisture, Tellus, Ser. B, 53(5), 593611.
  • Treydte, K. S., G. H. Schleser, G. Helle, D. C. Frank, M. Winiger, G. H. Haug, and J. Esper (2006), The twentieth century was the wettest period in northern Pakistan over the past millennium, Nature, 440, 11791182.
  • Treydte, K. S., et al. (2007), Signal strength and climate calibration of a European tree-ring isotope network, Geophys. Res. Lett, doi:10.1029/2007GL031106, in press.
  • Wanner, H., R. Rickli, E. Salvisberg, C. Schmutz, and M. Schüepp (1997), Global climate change and variability and its influence on alpine climate: Concepts and observations, Theor. Appl. Climatol., 58, 221243.
  • Waterhouse, J. S., V. R. Switsur, A. C. Barker, A. H. C. Carter, D. L. Hemming, N. J. Loader, and I. Robertson (2004), Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations, Quat. Sci. Rev., 23, 803810.
  • Wilson, R., and W. Elling (2004), Temporal instability in tree-growth/climate response in the Lower Bavarian Forest region: Implications for dendroclimatic reconstructions, Trees Struct. Funct., 18, 1928.
  • Yakir, D., M. J. DeNiro, and J. Gat (1990), Natural Deuterium and oxygen-18 enrichment in leaf water of cotton plants grown under wet and dry conditions: Evidence for water compartmentalization and its dynamics, Plant Cell Environ., 13, 4956.