SEARCH

SEARCH BY CITATION

References

  • Aiken, G. R., and J. A. Leenheer (1993), Isolation and chemical characterization of dissolved and colloidal organic matter, Chem. Ecol., 8, 135151.
  • Asshoff, R., and S. Hättenschwiler (2005), Growth and reproduction of the alpine grasshopper Miramella alpine feeding on CO2-enriched dwarf shrubs at treeline, Oecologia, 142, 191201.
  • Bednorz, F., M. Reichstein, G. Broll, F.-K. Holtmeier, and W. Urfer (2000), Humus forms in the forest-alpine tundra ecotone at Stillberg (Dischmatal, Switzerland): Spatial heterogeneity and classification, Arct. Antarct. Alp. Res., 32, 2129.
  • Blaser, P. (1980), Der Boden als Standortsfaktor bei Aufforstungen in der subalpinen Stufe (Stillberg, Davos), Eidg. Anst. Forstliche Vers., 56, 527611.
  • Carney, K. M., B. A. Hungate, B. G. Drake, and J. P. Megonigal (2007), Altered soil microbial community at elevated CO2 leads to loss of soil carbon, Proc. Natl. Acad. Sci. U. S. A., 104, 49904995.
  • Cheng, W., and D. C. Coleman (1990), Effect of living roots on soil organic matter decomposition, Soil Biol. Biochem., 22, 781787.
  • Cheng, W., and D. W. Johnson (1998), Elevated CO2 rhizosphere processes, and soil organic matter decomposition, Plant Soil, 202, 167174.
  • Chin, Y.-P., G. Aiken, and E. O'Luoghlin (1994), Molecular weight polydispersity, and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol., 28, 18531858.
  • Clarke, N., I. Rosberg, and D. Aamlid (2005), Concentrations of dissolved organic carbon along an altitudinal gradient from Norway spruce forest to the mountain birch/alpine ecotone in Norway, Boreal Environ. Res., 10, 181189.
  • Dahlén, J., J. Hagberg, and S. Karlsson (2000), Analysis of low molecular weight organic acids in water with capillary zone electrophoresis employing indirect photometric detection, Fresenius J. Anal. Chem., 366, 488493.
  • De Jong, C., F. K. List, and P. J. Ergenzinger (2002), Experimental hydrological analyses in the Dischma based on daily and seasonal evaporation, Nord. Hydrol., 33, 114.
  • Fontaine, S., A. Mariotti, and L. Abbadie (2003), The priming effect of organic matter: A question of microbial competition, Soil Biol. Biochem., 35, 837843.
  • Freeman, C., N. Fenner, N. J. Ostle, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, S. Hughes, and J. Hudson (2004), Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels, Nature, 430, 195198.
  • Fröberg, M., D. Berggren, B. Bergkvist, C. Bryant, and H. Knicker (2003), The role of the Oi, Oe, and Oa layers in the leaching of DOC from the O horizon of a forest soil in southern Sweden, Geoderma, 113, 311322.
  • Hagedorn, F., and M. Machwitz (2007), Controls on dissolved organic matter leaching from forest litter grown under elevated atmospheric CO2, Soil Biol. Biochem., 39, 17591769.
  • Hagedorn, F., P. Schleppi, P. Waldner, and H. Flühler (2000), Export of dissolved organic carbon and nitrogen from Gleysol dominated catchments: The significance of water flow paths, Biogeochemistry, 50, 137161.
  • Hagedorn, F., P. Blaser, and R. Siegwolf (2002), Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon: Clues from δ13C signature, Soil Biol. Biochem., 34, 355366.
  • Hagedorn, F., D. Spinnler, M. Bundt, P. Blaser, and R. Siegwolf (2003), The input and fate of new C in two forest soils under elevated CO2, Global Change Biol., 9, 862872.
  • Hagedorn, F., M. Saurer, and P. Blaser (2004), A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils, Eur. J. Soil Sci., 55, 91100.
  • Handa, T. I., C. Körner, and S. Hättenschwiler (2005), A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation, Ecology, 86, 12881300.
  • Handa, T. I., C. Körner, and S. Hättenschwiler (2006), Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment, Global Change Biol., 12, 24172430.
  • Handa, T. I., F. Hagedorn, and S. Hättenschwiler (2008), No stimulation in root production in response to four years of in situ CO2 enrichment at the Swiss treeline, Funct. Ecol., doi:10.1111/j.1365-2435.2007.01372.x, in press. (Published online 17 December 2007.).
  • Hättenschwiler, S., and D. Bretscher (2001), Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types, Global Change Biol., 7, 565579.
  • Hättenschwiler, S., I. T. Handa, L. Egli, R. Asshoff, W. Ammann, and C. Körner (2002), Atmospheric CO2 enrichment of alpine treeline conifers, New Phytol., 156, 363375.
  • Hoosbeek, M. R., M. Lukac, D. van Dam, D. L. Godbold, E. J. Velthorst, F. A. Biondi, A. Peressotti, M. F. Cotrufo, P. de Angelis, and G. Scarascia-Mugnozza (2004), More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased priming effect, Global Biogeochem. Cycles, 18, GB1040, doi:10.1029/2003GB002127.
  • Hungate, B. A., R. B. Jackson, C. B. Field, and F. S. Chapin III (1996), Detecting changes in soil carbon in CO2 enrichment experiments, Plant Soil, 187, 135145.
  • Hungate, B. A., E. A. Holland, R. B. Jackson, F. S. Chapin III, H. A. Mooney, and C. B. Field (1997), The fate of carbon under carbon dioxide enrichment, Nature, 388, 576579.
  • Kaiser, K., and G. Guggenberger (2000), The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils, Org. Geochem., 31, 711725.
  • Kaiser, K., G. Guggenberger, L. Haumaier, and W. Zech (2001), Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany, Biogeochemistry, 55, 103143.
  • Kalbitz, K., S. Solinger, J.-H. Park, B. Michalzik, and E. Matzner (2000), Controls on the dynamics of dissolved organic carbon in soils: A review, Soil Sci., 165, 277304.
  • Kalbitz, K., K. Kaiser, J. Bargholz, and P. Dardenne (2006), Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter, Eur. J. Soil Sci., 57, 504516.
  • King, J. S., K. S. Pregitzer, D. R. Zak, J. Sober, J. G. Isebrands, R. E. Dickson, G. R. Hendrey, and D. F. Karnosky (2001), Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3, Oecologia, 128, 237250.
  • King, J. S., P. J. Hanson, P. DeAngelis, R. J. Norby, and K. S. Pregitzer (2004), A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments, Global Change Biol., 6, 10271042.
  • Körner, C. (2000), Biosphere responses to CO2 enrichment, Ecol. Appl., 10, 15901619.
  • Kuzyakov, Y., J. K. Friedel, and K. Stahr (2000), Review of mechanisms and quantification of priming effects, Soil Biol. Biochem., 32, 14851498.
  • Lichter, J., M. Lavine, K. A. Mace, D. D. Richter, and W. H. Schlesinger (2000), Throughfall chemistry in a loblolly pine plantation under elevated atmospheric CO2 concentrations, Biogeochemistry, 50, 7393.
  • Loya, W. M., K. S. Pregitzer, N. J. Karberg, J. S. King, and C. P. Giardina (2003), Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels, Nature, 425, 705707.
  • Michalzik, B., K. Kalbitz, J.-H. Park, S. Solinger, and E. Matzner (2001), Fluxes and concentrations of dissolved organic carbon and nitrogen: A synthesis for temperate forests, Biogeochemistry, 52, 173205.
  • Michalzik, B., E. Tipping, J. Mulder, G. J. F. Lancho, E. Matzner, C. Bryant, N. Clarke, S. Lofts, and V. M. A. Esteban (2003), Modelling the production and transport of dissolved organic carbon in forest soils, Biogeochemistry, 66, 241264.
  • Neff, J. C., and G. P. Asner (2001), Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model, Ecosystems, 4, 2948.
  • Norby, R. J., J. Ledford, C. D. Reilly, N. E. Miller, and E. G. O'Neill (2004), Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment, Proc. Natl. Acad. Sci. U. S. A., 101, 96899693.
  • Park, J.-H., and E. Matzner (2003), Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux, Biogeochemistry, 66, 265286.
  • Pregitzer, K. S., D. R. Zak, J. B. Andrew, J. A. Ashby, and N. W. MacDonald (2004), Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems, Biogeochemistry, 68, 179197.
  • Reichstein, M., F. Bednorz, G. Broll, and T. Kätterer (2000), Temperature dependence of carbon mineralisation: conclusions from a long-term incubation of subalpine soil samples, Soil Biol. Biochem., 32, 947958.
  • Saxe, H., D. S. Ellsworth, and J. Heath (1998), Trees and forest functioning in an enriched CO2 atmosphere, New Phytol., 139, 395436.
  • Schlesinger, W. H., and J. Lichter (2001), Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2, Nature, 411, 466469.
  • Schmitt, M., L. Thöni, P. Waldner, and A. Thimonier (2005), Total deposition of nitrogen on Swiss long-term forest ecosystem research (LWF) plots: Comparison of the throughfall and the inferential method, Atmos. Environ., 39, 10791091.
  • Schönenberger, W., and W. Frey (1988), Untersuchungen zur Ökologie und Technik der Hochlagenaufforstung. Forschungsergebnisse aus dem Lawinenanrissgebiet Stillberg, Schweiz. Z. Forstwes., 139, 735820.
  • Strobel, B. W. (2001), Influence of vegetation on low molecular weight carboxylic acids in soil solution: A review, Geoderma, 99, 169198.
  • Swaine, T., and W. E. Hills (1959), The phenolic constituents of Prunus domestica: I. The quantitative analysis of phenolic constituents, J. Sci. Food Agric., 10, 6368.
  • Van Ginkel, J. H., and A. Gorissen (1998), In situ decomposition of grass roots as affected by elevated atmospheric carbon dioxide, Soil Sci. Soc. Am. J., 62, 951958.
  • van Hees, P. A. W., S. I. Vinogradoff, D. L. Jones, and D. L. Godbold (2003), Low molecular weight organic acids adsorption in forest soils: Effects on soil solution concentrations and biodegradation rates, Soil Biol. Biochem., 35, 10151026.
  • van Hees, P. A. W., D. L. Jones, R. Finlay, D. L. Godbold, and U. S. Lundström (2005), The carbon we do not see: The impact of low molecular weight compounds on carbon dynamics and respiration in forest soils—A review, Soil Biol. Biochem., 37, 113.
  • Yano, Y., W. H. McDowell, and J. D. Aber (2000), Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition, Soil Biol. Biochem., 32, 17431751.
  • Zak, D. R., K. S. Pregritzer, P. S. Curtis, J. A. Teeri, R. Fogel, and D. L. Randlet (1993), Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles, Plant Soil, 151, 105117.