SEARCH

SEARCH BY CITATION

References

  • Anderson, J. B. (1999), Antarctic Marine Geology, p. 289, Cambridge Univ. Press, Cambridge, U. K.
  • Billups, K., and D. P. Schrag (2002), Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera, Paleoceanography, 17(1), 1003, doi:10.1029/2000PA000567.
  • Billups, K., and D. P. Schrag (2003), Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change, Earth. Planet. Sci. Lett., 209, 181195.
  • Boyle, E. A., and L. D. Keigwin (1985), Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: Changes in deep ocean circulation and chemical inventories, Earth Planet. Sci. Lett., 76, 135150.
  • Broecker, W. S., and T.-H. Peng (1982), Tracers in the Sea, Lamont-Doherty Earth Obs., Palisades, N. Y.
  • Cape Roberts Science Team (2000), Summary of results, in Studies from Cape Roberts Project: Initial Report on CRP-3, Ross Sea, Antarctica, edited by P. J. Barrett, M. Sarti, and S. Wise, Terra Antarct., 8, 185203.
  • DeConto, R. M., and D. Pollard (2003), Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 421, 245249.
  • Elderfield, H., J. Yu, P. Anand, T. Kiefer, and B. Nyland (2006), Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis, Earth Planet. Sci. Lett., 250, 633649.
  • Exon, N. F., J. P. Kennett, M. J. Malone, and the Leg 189 Shipboard Scientific Party (2001), Proceedings of Ocean Drilling Program Initial Report [CD-ROM], vol. 189, Ocean Drill. Program, College Station, Tex.
  • Flower, B. P., and J. P. Kennett (1994), The middle Miocene climate transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 537555.
  • Haq, B. U., J. Hardenbol, and P. R. Vail (1987), Chronology of fluctuating sea levels since the Triassic, Science, 235, 11561167.
  • Holbourn, A., W. Kuhnt, M. Schulz, and H. Erlenkeuser (2005), Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion, Nature, 438, 483487.
  • Holbourn, A., W. Kuhnt, M. Schulz, J.-A. Flores, and N. Andersen (2007), Orbitally paced climate evolution during the middle Miocene “Monterey” carbon isotope excursion, Earth Planet Sci. Lett., 261, 534550.
  • Hsu, K. J., and D. Bernoulli (1978), Genesis of the Tethys and the Mediterranean, Initial Rep. Deep Sea Drill. Proj., 42, 943950.
  • John, C. M., G. D. Karner, and M. Muiti (2004), δ18O and Marion Plateau backstripping: Combining two approaches to constrain late middle Miocene eustatic amplitude, Geology, 32, 829832.
  • Kennett, J. P., and P. F. Barker (1990), Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctic: An ocean-drilling perspective, Proc. Ocean Drill. Program Sci. Res., 113, 937960.
  • Kennett, J. P., G. Keller, and M. S. Srinivasan (1985), Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region, in The Miocene Ocean: Paleoceanography and Biogeography, edited by J. P. Kennett, Geol. Soc. Am. Mem., 163, 197236.
  • Kominz, M. A., and S. F. Pekar (2001), Oligocene eustasy from two-dimensional sequence stratigraphic backstripping, Geol. Soc. Am. Bull., 113, 291301.
  • Lawver, L. A., L. M. Gahagan, and M. F. Coffin (1992), The development of paleoseaways around Antarctica, in The Antarctic Paleoenvironment: A Perspective on Global Change, Part One, Ant. Res. Ser., vol. 56, edited by J. P. Kennett, and D. A. Warnke pp. 730, AGU, Washington, D. C.
  • Lea, D. W. (2004), Elemental and isotopic proxies of past ocean temperatures, in The Oceans and Marine Chemistry, Treatise on Geochem., vol. 6, edited by H. Elderfield, pp. 365390, Elsevier, New York.
  • Lea, D. W., and E. A. Boyle (1993), Determination of carbonate-bound barium in corals and foraminifer by isotope dilution plasma mass spectrometry, Chem. Geol., 103, 7384.
  • Lea, D. W., and P. A. Martin (1996), A rapid mass spectrometric method for the simultaneous analysis of barium, cadmium, and strontium in foraminifera shells, Geochim. Cosmochim. Acta, 60, 31433149.
  • Lea, D. W., D. K. Pak, and H. J. Spero (2000), Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations, Science, 289, 17191724.
  • Lear, C. H., H. Elderfield, and P. A. Wilson (2000), Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite, Science, 287, 269272.
  • Lear, C. H., Y. Rosenthal, and N. Slowey (2002), Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration, Geochim. Cosmochim, Acta, 66, 33753387.
  • Lear, C. H., Y. Rosenthal, and J. D. Wright (2003), The closing of a seaway: Ocean water masses and global climate change, Earth Planet. Sci. Lett., 210, 425436.
  • Lear, C. H., Y. Rosenthal, H. K. Coxall, and P. A. Wilson (2004), Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle, Paleoceanography, 19, PA4015, doi:10.1029/2004PA001039.
  • Lewis, A. R., D. R. Marchant, D. E. Kowalewski, S. L. Baldwin, and L. E. Webb (2006), The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean, Geology, 37, 513516.
  • Lourens, L. J., F. J. Hilgen, J. Laskar, N. J. Shackleton, and D. Wilson (2004), The Neogene period, in Geologic Time Scale 2004, edited by F. Gradstein, J. Ogg, and A. Smith, pp. 409440, Cambridge Univ. Press, New York.
  • Lynch-Stieglitz, J., W. B. Curry, and N. Slowey (1999), A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera, Paleoceanography, 14, 360373.
  • Marchant, D. R., G. H. Denton, and D. E. Sugden (1993), Miocene glacial stratigraphy and landscape evolution of the western Asgard Range, Geogr. Ann., 75A, 718730.
  • Marchitto, T. M., S. P. Bryan, W. B. Curry, and D. C. McCorkle (2007), Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma, Paleoceanography, 22, PA1203, doi:10.1029/2006PA001287.
  • Margolis, S. V. (1975), Paleoglacial history of Antarctica inferred from analysis of Leg 29 sediments by scanning electron microscopy, Initial Rep. Deep Sea Drill. Proj., 29, 10391048.
  • Martin, P. A., D. W. Lea, Y. Rosenthal, N. J. Shackleton, M. Sarnthein, and T. Papenfuss (2002), Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca, Earth Planet. Sci. Lett., 198, 193209.
  • Matthews, R. K., and R. Z. Poore (1980), Tertiary δ18O record and glacio-eustatic sea-level fluctuation, Geology, 8, 501504.
  • Miller, K. G., R. G. Fairbanks, and G. S. Mountain (1987), Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, Paleoceanography, 2, 119.
  • Miller, K. G., M. D. Feigenson, J. D. Wright, and B. M. Clement (1991a), Miocene isotope reference section, Deep Sea Drilling Project, Site 608: An evaluation of isotope and biostratigraphic resolution, Paleoceanography, 6, 3352.
  • Miller, K. G., J. D. Wright, and R. G. Fairbanks (1991b), Unlocking the ice house: Oligocene–Miocene oxygen isotope, eustasy, and margin erosion, J. Geophys. Res., 69, 68296848.
  • Miller, K. G., M. A. Kominz, J. V. Browning, J. D. Wright, G. S. Mountain, M. E. Katz, P. J. Sugarman, B. S. Cramer, N. Christie-Blick, and S. J. Pekar (2005), The Phanerozoic record of global sea-level change, Science, 310, 12931298.
  • O'Neil, J. R., R. N. Clayton, and T. K. Mayeda (1969), Oxygen isotope fractionation in divalent metal carbonates, J. Chem. Phys., 5, 55475558.
  • Pagani, M., M. A. Arthur, and K. H. Freeman (1999), Miocene evolution of atmospheric carbon dioxide, Paleoceanography, 14, 273292.
  • Pearson, P. N., and M. R. Palmer (2000), Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695699.
  • Prentice, M. P., and R. K. Matthews (1991), Tertiary ice sheet dynamics: The snow gun hypothesis, J. Geophys. Res., 96, 68116827.
  • Rowley, D. B. (2002), Rate of plate creation and destruction: 180 Ma to present, Geol. Soc. Am, Bull., 114, 927933.
  • Schnitker, D. (1980), North Atlantic oceanography as possible cause of Antarctic glaciation and eutrophication, Nature, 284, 615616.
  • Sclater, J. G., L. Meinke, A. Bennett, and C. Murphy (1985), The depth of the ocean through the Neogene, in The Miocene Ocean: Paleoceanography and Biogeography, edited by J. P. Kennett, Mem. Geol. Soc. Am., 163, 121
  • Shackleton, N. J. (2000), The 100000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity, Science, 289, 18971902.
  • Shackleton, N. J., and J. P. Kennett (1975), Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotopic analyses in DSDP Sites 277, 279, and 281, Initial Rep. Deep Sea Drill. Proj., 29, 143156.
  • Shackleton, N. J., and N. D. Opdyke (1973), Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 and 106 year scale, Quat. Res., 3, 3955.
  • Shevenell, A. E. (2004), The role of climate feedbacks in the Middle Miocene climate transition, Ph.D. dissertation, Univ.of Calif., Santa Barbara.
  • Shevenell, A. E., and J. P. Kennett (2004), Paleoceanographic change during the middle Miocene climate revolution: An Antarctic stable isotope perspective, in The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica, Geophys. Mon. Ser., vol. 151, edited by N. Exon, J. P. Kennett, and M. Malone, pp. 235252, AGU, Washington, D. C.
  • Shevenell, A. E., J. P. Kennett, and D. W. Lea (2004), Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion, Science, 305, 17661770.
  • Stanley, S. M., and L. M. Hardie (1998), Secular oscillations in the carbonate mineralogy of reef-building and sediment producing organisms driven by tectonically forced shifts in seawater chemistry, Palaeogeogr. Palaeoclimatol. Palaeoecol., 144, 319.
  • Sugden, D., and G. Denton (2004), Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis, Geol. Soc. Am. Bull., 116, 840857.
  • Vincent, E., and W. H. Berger (1985), Carbon dioxide and polar cooling in the Miocene, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 455468, AGU, Washington, D. C.
  • Vlastelic, I., M. Carpentier, and E. Lewin (2005), Miocene climate change recorded in the chemical and isotopic (Pb, Nd, Hf) signature of Southern Ocean sediments, Geochem. Geophys. Geosyst., 6, Q03003, doi:10.1029/2004GC000819.
  • Wilkinson, B. H., and T. J. Algeo (1989), Sedimentary carbonate record of calcium-magnesium cycling, Am. J. Sci., 289, 11581194.
  • Woodruff, F., and S. M. Savin (1989), Miocene deepwater oceanography, Paleoceanography, 4, 87140.
  • Woodruff, F., and S. M. Savin (1991), Mid-Miocene isotope stratigraphy in the deep sea: high-resolution correlations, paleoclimatic cycles, and sediment preservation, Paleoceanography, 6, 755806.
  • Wright, J. D., K. G. Miller, and R. G. Fairbanks (1992), Evolution of modern deepwater circulation: Evidence from the late Miocene Southern Ocean, Paleoceanography, 6, 275290.
  • Zachos, J. C., M. Pagani, L. C. Sloan, E. Thomas, and K. Billups (2001), Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686693.
  • Zachos, J. C., M. W. Wara, S. Bohaty, M. L. Delaney, M. R. Petrizzo, A. Brill, T. J. Bralower, and I. Premoli-Silva (2003), A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum, Science, 302, 15511554.