SEARCH

SEARCH BY CITATION

References

  • Alt, J., and W. Bach (2003), Alteration of oceanic crust: Subsurface rock-water interactions, in Energy and Mass Transfer in Marine Hydrothermal Systems, edited by P. E. Halbach et al., pp. 728, Dahlem Univ. Press, Berlin.
  • Alt, J. C., J. Honnorez, C. Laverne, and R. Emmermann (1986), Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry, and evolution of seawater-basalt interactions, J. Geophys. Res., 91, 10,30910,335, doi:10.1029/JB091iB10p10309.
  • Alt, J. C., et al. (1996), Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: A synthesis of results from Site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140, and 148), Proc. Ocean Drill. Program Sci. Results, 148, 417434.
  • Bach, W., J. Erzinger, J. C. Alt, and D. A. H. Teagle (1996), Chemistry of the lower sheeted dike complex, hole 504B (leg 148): Influence of magmatic differentiation and hydrothermal alteration, Proc. Ocean Drill. Program Sci. Results, 148, 3955.
  • Bach, W., B. Peucker-Ehrenbrink, S. R. Hart, and J. S. Blusztajn (2003), Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B — Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle, Geochem. Geophys. Geosyst., 4(3), 8904, doi:10.1029/2002GC000419.
  • Bailey, S. W. (1988), Chlorites: Structures and crystal chemistry, in Hydrous Phyllosilicates (Exclusive of Micas), edited by S. W. Bailey, pp. 347403, Mineral. Soc. of Am., Washington, D. C.
  • Barker, A., L. Coogan, K. Gillis, N. Haymon, and D. Weis (2007), Fault-controlled hydrothermal fluid flow at the EPR, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract T23B-1414.
  • Barker, A. K., L. A. Coogan, K. M. Gillis, and D. Weis (2008), Strontium isotope constraints on fluid flow in the sheeted dike complex of fast spreading crust: Pervasive fluid flow at Pito Deep, Geochem. Geophys. Geosyst., doi:10.1029/2007GC001901, in press.
  • Berndt, M. E., and W. E. Seyfried Jr. (1993), Calcium and sodium exchange during hydrothermal alteration of calcic plagioclase at 400°C and 400 bars, Geochim. Cosmochim. Acta, 57, 44454451, doi:10.1016/0016-7037(93)90494-H.
  • Berndt, M. E., W. E. Seyfried Jr., and D. R. Janecky (1989), Plagioclase and epidote buffering of cation ratios in mid-ocean ridge hydrothermal fluids: Experimental results in and near the supercritical region, Geochim. Cosmochim. Acta, 53, 22832300, doi:10.1016/0016-7037(89)90351-7.
  • Bettison, L. A., and P. Schiffman (1988), Composition and structural variations of phyllosilicates from the Point Sal ophiolite, California, Am. Mineral., 73, 186226.
  • Bickle, M. J., D. A. H. Teagle, J. Beynon, and H. J. Chapman (1998), The structure and controls on fluid-rock interactions in ocean ridge hydrothermal systems: Constraints from the Troodos ophiolite, in Modern Ocean Floor Processes and the Geological Record, edited by R. A. Mills, and K. Harrison, Geol Soc. Spec. Publ., 148, 127152.
  • Bischoff, J. L., and R. J. Rosenbauer (1986), The system NaCl-H2O: Relations of vapor-liquid near the critical temperature of water and of vapor-liquid-halite from 300° to 500°C, Geochim. Cosmochim. Acta, 50, 14371444, doi:10.1016/0016-7037(86)90317-0.
  • Brown, P. E., and W. M. Lamb (1989), P-V-T properties of fluids in the system H2O ± CO2 ± NaCl: New graphical presentations and implications for fluid inclusion studies, Geochim. Cosmochim. Acta, 53, 12091221, doi:10.1016/0016-7037(89)90057-4.
  • Cann, J., and K. M. Gillis (2004), Hydrothermal insights from the Troodos ophiolite, Cyprus, in Hydrogeology of the Oceanic Lithosphere, edited by E. E. Davis, and H. Elderfield, pp. 274310, Cambridge Univ. Press, Cambridge, U. K.
  • Chutas, L. A. M. (2007), Structures in upper oceanic crust: Perspectives from Pito Deep and Iceland, M.Sc. thesis, 122 pp., Duke Univ., Durham, N. C.
  • Coogan, L. A. (2008), Reconciling temperatures of metamorphism, fluid fluxes and heat transport in the upper crust at intermediate- to fast-spreading mid-ocean ridges, Geochem. Geophys. Geosyst., 9, Q02013, doi:10.1029/2007GC001787.
  • Coumou, D., T. Driesner, S. Geiger, C. A. Heinrich, and S. Matthai (2006), The dynamics of mid-ocean ridge hydrothermal systems: Splitting plumes and fluctuating vent temperatures, Earth Planet. Sci. Lett., 245, 218231, doi:10.1016/j.epsl.2006.02.044.
  • Delaney, J. R., D. S. Kelley, M. D. Lilley, D. A. Butterfield, J. A. Baross, W. S. D. Wilcock, R. W. Embley, and M. Summit (1998), The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges, Science, 281, 222230, doi:10.1126/science.281.5374.222.
  • Devey, C., J. Alt, W. Bach, J. Erzinger, A. Fisher, K. Gillis, M. Kinoshita, P. Nehlig, and H. Staudigel (2003), Group report: What is the nature of the subseafloor fluid circulation and reaction processes? in Energy and Mass Transfer in Marine Hydrothermal Systems, edited by P. E. Halbach et al., pp. 7184, Dahlem University Press, Berlin.
  • Eggins, S. M., J. D. Woodhead, L. P. J. Kinsley, G. E. Mortimer, P. Sylvester, M. T. McCulloch, J. M. Hergt, and M. R. Handler (1997), A simple method for the precise determination of ≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardization, Chem. Geol., 134, 311326, doi:10.1016/S0009-2541(96)00100-3.
  • Emmermann, R. (1985), Basement geochemistry, Hole 504B, Initial Rep. Deep Sea Drill. Proj., 83, 183199.
  • Essene, E. J., and D. R. Peacor (1995), Clay mineral thermometry: A critical perspective, Clays Clay Miner., 43, 540553, doi:10.1346/CCMN.1995.0430504.
  • Fontaine, F. J., and W. S. D. Wilcock (2007), Two-dimensional numerical models of open-top hydrothermal convection at high Rayleigh and Nusselt numbers: Implications for mid-ocean ridge hydrothermal circulation, Geochem. Geophys. Geosyst., 8, Q07010, doi:10.1029/2007GC001601.
  • Fournier, R. O. (1983), A method of calculating quartz solubilities in aqueous sodium chloride solutions, Geochim. Cosmochim. Acta, 47, 579586, doi:10.1016/0016-7037(83)90279-X.
  • Francheteau, J., P. Patriat, J. Segoufin, R. Armijo, M. Doucoure, A. Yelleschaouche, J. Zukin, S. Calmant, D. F. Naar, and R. C. Searle (1988), Pito and Orongo fracture zones: The northern and southern boundaries of the Easter microplate (southeast Pacific), Earth Planet. Sci. Lett., 89, 363374, doi:10.1016/0012-821X(88)90123-9.
  • Gillis, K. M. (1995), Controls on hydrothermal alteration in a section of fast-spreading oceanic crust, Earth Planet. Sci. Lett., 134, 473489, doi:10.1016/0012-821X(95)00137-2.
  • Gillis, K. M. (2003), Subseafloor geology of hydrothermal root zones at oceanic spreading centers, in Energy and Mass Transfer in Marine Hydrothermal Systems, edited by P. E. Halbach et al., pp. 5370, Dahlem Univ. Press, Berlin.
  • Gillis, K. M. (2008), The roof of the axial magma chamber: A hornfelsic heat exchanger, Geology, 36, 299302, doi:10.1130/G24590A.1.
  • Gillis, K. M., and P. T. Robinson (1990), Patterns and processes of alteration in the lavas and dykes of the Troodos Ophiolite, Cyprus, J. Geophys. Res., 95, 21,52321,548.
  • Gillis, K. M., K. Muehlenbachs, M. Stewart, J. Karson, and T. Gleeson (2001), Fluid flow patterns in fast-spreading East Pacific Rise crust exposed at Hess Deep, J. Geophys. Res., 106, 26,31126,329, doi:10.1029/2000JB000038.
  • Goldfarb, M. S., and J. R. Delaney (1988), Response of two-phase fluids to fracture configurations within submarine hydrothermal systems, J. Geophys. Res., 93, 45854594, doi:10.1029/JB093iB05p04585.
  • Hayman, N., K. M. Gillis, and J. Karson (2005), Faulting and fluid flow in superfast crust near Pito Deep, AGU Trans., 86(52), Fall Meet. Suppl., Abstract T33D-0583.
  • Haymon, R. M., D. J. Fornari, M. H. Edwards, S. Carbotte, D. Wright, and K. C. Macdonald (1991), Hydrothermal vent distribution along the East Pacific Rise crest (9°09′–54′N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges, Earth Planet. Sci. Lett., 104, 513534, doi:10.1016/0012-821X(91)90226-8.
  • Hey, R. N., P. D. Johnson, F. Martinez, J. Korenaga, M. L. Somers, Q. J. Huggett, T. P. Lebas, R. I. Rusby, and D. F. Naar (1995), Plate boundary reorganization at a large-offset, rapidly propagating rift, Nature, 378, 167170, doi:10.1038/378167a0.
  • Holland, T., and J. Blundy (1994), Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry, Contrib. Mineral. Petrol., 116, 433447, doi:10.1007/BF00310910.
  • Honnorez, J., J. C. Alt, B.-M. Honnorez-Guerstein, C. Laverne, K. Muehlenbachs, J. Ruiz, and E. Saltzman (1985), Stockwork-like sulfide mineralization in young oceanic crust: Deep Sea Drilling Project Hole 504B, Initial Rep. Deep Sea Drill. Proj., 83, 263282.
  • Humphris, S. E., J. C. Alt, D. A. H. Teagle, and J. J. Honnorez (1998), Geochemical changes during hydrothermal alteration of basement in the stockwork beneath the active TAG hydrothermal mound, Proc. Ocean Drill. Program Sci. Results, 158, 255276.
  • Ishizuka, H. (1989), Mineral paragenesis of altered basalts from Hole 504B, ODP Leg 111, Proc. Ocean Drill. Program Sci., 111, 6176.
  • Karson, J., et al. (2005), Nested-scale investigations of tectonic windows into superfast crust exposed at the Pito Deep Rift, Easter Microplate, SE Pacific, InterRidge Newsl., 14, 58.
  • Klein, E. M., C. H. Langmuir, and H. Staudigel (1991), Geochemistry of basalts from the Southeast Indian Ridge, 115°E–138°E, J. Geophys. Res., 96, 20892107, doi:10.1029/90JB01384.
  • Kristmannsdottir, H. (1975), Hydrothermal alteration of basaltic rocks in Iceland geothermal areas, paper presented at 2nd United Nations Symposium on the development and use of geothermal resources May 20–29, San Francisco, Calif.
  • Kristmannsdottir, H. (1979), Alteration of basaltic rocks by hydrothermal activity at 100–300°C, in Proceedings of the 6th International Clay Conference, Dev. Sedimentol., vol. 27, edited by M. Mortland, and V. Farmer, pp. 359367, Elsevier, Amsterdam.
  • Laverne, C., D. A. Vanko, P. Tararotti, and J. C. Alt (1995), Chemistry and geothermometry of secondary minerals from the deep sheeted dyke complex, Hole 504B, Proc. Ocean Drill. Program Sci. Results, 137/140, 167190.
  • Leake, B., et al. (1997), Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association on new minerals and mineral names, Can. Mineral., 35, 219246.
  • Lilley, M. D., D. A. Butterfield, J. E. Lupton, and E. J. Olson (2003), Magmatic events can produce rapid changes in hydrothermal vent chemistry, Nature, 422, 878881, PubMed, doi:10.1038/nature01569.
  • Lindsley, D. H. (1983), Pyroxene thermometry, Am. Mineral., 68, 477493.
  • Liou, J. G., S. Kuniyoshi, and K. Ito (1974), Experimental studies of the phase relations between greenschist and amphibolite in a basaltic system, Am. J. Sci., 274, 613632.
  • Manning, C. E., and D. K. Bird (1986), Hydrothermal clinopyroxenes of the Skaergaard intrusion, Contrib. Mineral. Petrol., 92, 437447, doi:10.1007/BF00374426.
  • Martinez, F., D. F. Naar, T. B. Reed, and R. N. Hey (1991), 3-dimensional Seamarc II, gravity, and magnetics study of large-offset rift propagation at the Pito Rift, Easter Microplate, Mar. Geophys. Res., 13, 255285, doi:10.1007/BF00366279.
  • Naar, D. F., and R. N. Hey (1991), Tectonic evolution of the Easter Microplate, J. Geophys. Res., 96, 79617993, doi:10.1029/90JB02398.
  • Naar, D. F., F. Martinez, R. N. Hey, T. B. Reed, and S. Stein (1991), Pito Rift: How a large-offset rift propagates, Mar. Geophys. Res., 13, 287309, doi:10.1007/BF00366280.
  • Nagaseki, H., and K. Hayashi (2008), Experimental study of the behavior of copper and zinc in a boiling hydrothermal system, Geology, 36, 2730, doi:10.1130/G24173A.1.
  • Perk, N. W., L. A. Coogan, J. A. Karson, E. M. Klein, and H. D. Hanna (2007), Petrology and geochemistry of primitive lower oceanic crust from Pito Deep: Implications for the accretion of the lower crust at the southern East Pacific Rise, Contrib. Mineral. Petrol., 154, 575590, doi:10.1007/s00410-007-0210-z.
  • Pokrovski, G. P., J. Roux, and J.-C. Harrichoury (2005), Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems, Geology, 33, 657660, doi:10.1130/G21475.1.
  • Pollock, M. A. (2007), Geochemistry of dikes and lavas from tectonic windows, Ph.D. thesis, Duke Univ., Durham, N. C.
  • Regelous, M., Y. Niu, J. I. Wendt, R. Batiza, A. Greiga, and K. D. Collerson (1999), Variations in the geochemistry of magmatism on the East Pacific Rise at 10°30′N since 800 ka, Earth Planet. Sci. Lett., 168, 4563, doi:10.1016/S0012-821X(99)00048-5.
  • Robinson, D., and A. Santana de Zamora (1999), The smectite to chlorite transition in the Chipilapa geothermal system, El Salvador, Am. Mineral., 84, 607619.
  • Robinson, D., S. T. Schmidt, and S. de Zamora (2002), Reaction pathways and reaction progress for the smectite-to-chlorite transformation: Evidence from hydrothermally altered metabasites, J. Metamorph. Geol., 20, 167174, doi:10.1046/j.0263-4929.2001.00361.x.
  • Robinson, P., F. S. Spear, J. C. Schumacher, J. Laird, C. Klein, B. W. Evans, and B. L. Doolan (1982), Phase relations of metamorphic amphiboles: Natural occurrence and theory, in Amphiboles: Petrology and Experimental Phase Relations, edited by P. H. Ribbe, pp. 1211, Mineral. Soc. of Am., Blacksburg, Va.
  • Roedder, E. (1984), Fluid Inclusions, 644 pp., Mineral. Soc. of Am., Washington, D. C.
  • Saccocia, P., and K. M. Gillis (1995), Hydrothermal upflow zones in the oceanic crust, Earth Planet. Sci. Lett., 136, 116, doi:10.1016/0012-821X(95)00155-5.
  • Schiffman, P., and G. O. Fridleifsson (1991), The smectite-chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations, J. Metamorph. Geol., 9, 679696, doi:10.1111/j.1525-1314.1991.tb00558.x.
  • Schiffman, P., and H. Staudigel (1995), The smectite to chlorite transition in a fossil hydrothermal system: The basement complex of La Palma, Canary Islands, J. Metamorph. Geol., 13, 487498, doi:10.1111/j.1525-1314.1995.tb00236.x.
  • Schöps, D., and P. M. Herzig (1990), Sulfide composition and microthermometry of fluid inclusions in the Leg 111 sheeted dike section of Ocean Drilling Program Hole 504B, Costa Rica Rift, J. Geophys. Res., 95, 84058418, doi:10.1029/JB095iB06p08405.
  • Seewald, J. S., and W. E. Seyfried Jr. (1990), The effect of temperature on metal mobility in subseafloor hydrothermal systems: Constraints from basalt alteration experiments, Earth Planet. Sci. Lett., 101, 388403, doi:10.1016/0012-821X(90)90168-W.
  • Seyfried, J. W. E., and K. Ding (1995), Phase equilibria in subseafloor hydrothermal systems: a review of the role of redox, temperature, pH, and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophys. Monogr. Ser., vol. 91, edited by S. E. Humphris et al., pp. 248272, AGU, Washington, D. C.
  • Seyfried, W. E.Jr., M. E. Berndt, and J. S. Seewald (1988), Hydrothermal alteration processes at mid-ocean ridges: constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust, in Seafloor Hydrothermal Mineralization, edited by T. J. Barrett, and J. L. Jambor, pp. 787804, Mineral. Assoc., of Can., Ottawa, Ontario.
  • Sleep, N. H. (1991), Hydrothermal circulation, anhydrite precipitation, and thermal structure at ridge axes, J. Geophys. Res., 96, 23752387, doi:10.1029/90JB02335.
  • Sohn, R. A., D. J. Fornari, K. L. Von Damm, J. A. Hildebrand, and S. C. Webb (1998), Seismic and hydrothermal evidence for a cracking event on the East Pacific Rise crest at 9°50′N, Nature, 396, 159161, doi:10.1038/24146.
  • Teagle, D. A. H., M. J. Bickle, and J. C. Alt (2003), Recharge flux to ocean-ridge black smoker systems: A geochemical estimate from ODP Hole 504B, Earth Planet. Sci. Lett., 210, 8189, doi:10.1016/S0012-821X(03)00126-2.
  • Tivey, M. K., S. E. Humphris, and G. Thompson (1995), Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data, J. Geophys. Res., 100, 12,52712,555.
  • Von Damm, K. (1995), Controls on the chemistry and temporal variability of seafloor hydrothermal fluids, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Implications, Geophys. Monogr. Ser., vol. 91, edited by S. E. Humphris et al., pp. 222247, AGU, Washington, D. C.
  • Von Damm, K. L., J. M. Edmond, B. Grant, C. I. Measures, B. Walden, and R. F. Weiss (1985), Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise, Geochim. Cosmochim. Acta, 49, 21972220, doi:10.1016/0016-7037(85)90222-4.
  • von Damm, K. L., J. L. Bischoff, and J. Rosenbauer (1991), Quartz solubility in hydrothermal seawater: An experimental study and equation describing quartz solubility for up to 0.5 M NaCl solutions, Am. J. Sci., 291, 9771007.
  • Wilcock, W. S. D., and J. R. Delaney (1996), Mid-ocean ridge sulfide deposits: Evidence for heat extraction from magma chambers or cracking fronts? Earth Planet. Sci. Lett., 145, 4964, doi:10.1016/S0012-821X(96)00195-1.
  • Zuleger, E., J. C. Alt, and J. Erzinger (1996), Data report: Trace element geochemistry of the lower sheeted dike complex, Hole 504B (LEG 140), Proc. Ocean Drill. Program Sci. Results, 148, 455466.