SEARCH

SEARCH BY CITATION

References

  • Amorós-López, J., L. Gómez-Chova, J. Vila-Francés, J. Calpe, L. Alonso, J. Moreno, and S. del Valle-Tascón (2006), Study of the diurnal cycle of stressed vegetation for the improvement of fluorescence remote sensing, Proc. SPIE Int. Soc. Opt. Eng., 6359, 63590R, doi:10.1117/12.690036.
  • Barton, C. V. M., and P. R. J. North (2001), Remote sensing of canopy light use efficiency using the photochemical reflectance index model and sensitivity analysis, Remote Sens. Environ., 78, 264273.
  • Campbell, P. K. E., E. M. Middleton, L. A. Corp, J. E. McMutey, M. S. Kim, E. W. Chappelle, and L. M. Butcher (2002), Contribution of chlorophyll fluorescence to the reflectance of corn foliage, in IGARSS 2002: Remote Sensing, Integrating Our View of the Planet: 2002 IEEE International Geoscience and Remote Sensing Symposium, Inst. of Electr. and Electron. Eng., New York.
  • Dash, J., and P. Curran (2004), The MERIS terrestrial chlorophyll index, Int. J. Remote Sens., 25, 50035013.
  • Gamon, J. A., J. Peñuelas, and C. B. Field (1992), A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency, Remote Sens. Environ., 41, 3544.
  • Guanter, L., V. Estellés, and J. Moreno (2007a), Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data. Remote Sens. Environ., in press.
  • Guanter, L., M. C. González-Sampedro, and J. Moreno (2007b), A method for the atmospheric correction of ENVISAT/MERIS data over land targets, Int. J. Remote Sens., 28, 709728.
  • Krause, G. H., and E. Weis (1984), Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals, Photosynth. Res., 5, 139157.
  • Liu, L., Y. Zhang, J. Wang, and C. Zhao (2005), Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on the Fraunhofer Line principle, IEEE Trans. Geosci. Remote Sens., 43, 827832.
  • Maier, S., K. P. Günther, and M. Stellmes (2002), Remote sensing and modeling of solar induced fluorescence, in Proceedings of the 1st Workshop on Remote Sensing of Solar Induced Vegetation Fluorescence [CD-ROM], Eur. Space Agency Spec. Publ., ESA SP-527, Eur. Space Agency, Noordwijk, Netherlands.
  • Nicodemus, F. E., J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis (1977), Geometrical considerations and nomenclature for reflectance, technical report, Natl. Bur. of Stand., U. S. Dep. of Commer., Washington, D. C.
  • Papageorgiou, G. (1975), Chlorophyll fluorescence: An intrinsic probe of photosynthesis, in Bioenergetics of Photosynthesis, pp. 319371, Elsevier, New York.
  • Plascyk, J. A. (1975), The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence, Opt. Eng., 14, 339346.
  • Rast, M., J. L. Bézy, and S. Bruzzi (1999), The ESA Medium Resolution Imaging Spectrometer MERIS—A review of the instrument and its mission, Int. J. Remote Sens., 20, 16811702.
  • Scheiber, U., and W. Bilger (1987), Rapid assement of stress effects on plant leaves by chlorophyll fluorescence measurements, in Plant Response to Stress, edited by J. D. Tenhunen, and E. M. Catarino, pp. 2753, Springer, New York.
  • Tucker, C. J. (1979), Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127150.
  • Zarco-Tejada, P. J., J. C. Pushnik, S. Z. Dobrowski, and S. L. Ustin (2003), Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects, Remote Sens. Environ., 84, 283294.