Width of the Hadley cell in simple and comprehensive general circulation models



[1] The width of the Hadley cell is studied over a wide range of climate regimes using both simple and comprehensive atmospheric general circulation models. Aquaplanet, fixed sea surface temperature lower boundary conditions are used in both models to study the response of the Hadley cell width to changes in both global mean temperature and pole-to-equator temperature gradient. The primary sensitivity of both models is a large expansion of the Hadley cell with increased mean temperature. The models also exhibit a smaller increase in width with temperature gradient. The Hadley cell widths agree well with a scaling theory by Held which assumes that the width is determined by the latitude where baroclinic eddies begin to occur. As surface temperatures are warmed, the latitude of baroclinic instability onset is shifted poleward due to increases in the static stability of the subtropics, which is increased in an atmosphere with higher moisture content.