Uncertainty in the sensitivity of Arctic sea ice to global warming in a perturbed parameter climate model ensemble



[1] The retreat of Arctic sea ice is a very likely consequence of climate change and part of a key feedback process, which can accelerate global warming. The uncertainty in predictions in the rate of sea ice retreat requires quantification and ultimately reduction via observational constraints. Here we analyse a climate model ensemble with perturbations to parameters in the atmosphere model. We find a large range of the sensitivity of Arctic sea-ice retreat to global temperature change, from 11 to 18% per °C. This is placed in the context of the uncertainty obtained by alternative model ensembles. Reasons for the different sensitivities are explored and we find that differences in the amount of ocean and atmospheric heat transported from low to high latitudes dominates over local radiative contributions to the heat budget. Furthermore, we find no significant relationship between the uncertainty in sea ice response to climate change and climate sensitivity.