Warming may create substantial water supply shortages in the Colorado River basin



[1] The high demand for water, the recent multiyear drought (1999–2007), and projections of global warming have raised questions about the long-term sustainability of water supply in the southwestern United States. In this study, the potential effects of specific levels of atmospheric warming on water-year streamflow in the Colorado River basin are evaluated using a water-balance model, and the results are analyzed within the context of a multi-century tree-ring reconstruction (1490–1998) of streamflow for the basin. The results indicate that if future warming occurs in the basin and is not accompanied by increased precipitation, then the basin is likely to experience periods of water supply shortages more severe than those inferred from the long-term historical tree-ring reconstruction. Furthermore, the modeling results suggest that future warming would increase the likelihood of failure to meet the water allocation requirements of the Colorado River Compact.