SEARCH

SEARCH BY CITATION

References

  • Aster, R. C., B. Borchers, and C. H. Thurber (2005), Parameter Estimation and Inverse Problems, 301 pp., Elsevier Academic Press, Burlington.
  • Baker, M. B., S. Alves, and E. M. Stolper (1996), Petrology and petrography of the Hawaii Scientific Drilling Project lavas: Inferences from olivine phenocryst abundances and compositions, J. Geophys. Res., 101, 11,71511,727.
  • Baudenbacher, F. J., N. T. Peters, J. P. Wikswo, and M. Radparvar (1998), High resolution LTS-SQUID magnetometer, Bull. Am. Phys. Soc., 43, 1626.
  • Baudenbacher, F. J., N. T. Peters, and J. P. Wikswo (2002a), High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures, Rev. Sci. Instrum., 73, 12471254.
  • Baudenbacher, F., N. T. Peters, P. Baudenbacher, and J. P. Wikswo (2002b), High resolution imaging of biomagnetic fields generated by action currents in cardiac tissue using a LTS-SQUID microscope, Physica C, 368, 2431.
  • Baudenbacher, F., L. E. Fong, J. R. Holzer, and M. Radparvar (2003), Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples, Appl. Phys. Lett., 82, 34873489.
  • Blakely, R. J. (1996), Potential Theory in Gravity and Magnetic Applications, 441 pp., Cambridge Univ. Press, New York.
  • Bott, M. H. P., and M. A. Hutton (1970), Limitations on the resolution possible in the direct interpretation of marine magnetic anomalies, Earth Planet. Sci. Lett., 8, 317319.
  • Braginski, A., and J. Clarke (2004), Introduction, in The SQUID Handbook, edited by J. Clarke, and A. I. Braginski, pp. 128, Wiley-VCH, Weinheim.
  • Cavarretta, G., A. Coradini, R. Funiciello, M. Fulchignoni, A. Taddeucci, and R. Trigila (1972), Glassy particles in Apollo 14 soil 14163,88: Peculiarities and genetic considerations, Proc. Lunar Sci. Conf., 3, 10851094.
  • Chatraphorn, S., E. F. Fleet, and F. C. Wellstood (2002), Relationship between spatial resolution and noise in scanning superconducting quantum interference device microscopy, J. Appl. Phys., 92, 47314740.
  • Clem, T. R., C. P. Foley, and M. N. Keene (2006), SQUIDs for geophysical survey and magnetic anomaly detection, in The SQUID Handbook, edited by J. Clarke, and A. I. Braginski, pp. 481543, Wiley-VCH, Weinheim.
  • Cochran, A., G. B. Donaldson, S. Evanson, and R. J. P. Bain (1993), First-generation SQUID-based nondestructive testing system, IEEE Proc. A, 140, 113120.
  • Culler, T. S., T. A. Becker, R. A. Muller, and P. R. Renne (2000), Lunar impact history from 40Ar/39Ar dating of glass spherules, Science, 287, 17851788.
  • Dampney, C. N. G. (1969), The equivalent source technique, Geophysics, 34, 3953.
  • Dechert, J., M. Mueck, and C. Heider (1999), A scanning SQUID microscope for samples at room temperature, IEEE Trans. Appl. Supercond., 9, 41114114.
  • DePaolo, D. J., E. M. Stolper, D. M. Thomas, and M. O. Garcia (1999), Hawaii Scientific Drilling Project: Core logs and summarizing data, Pasadena.
  • Egli, R., and F. Heller (2000), High-resolution imaging using a high-Tc superconducting quantum interference device (SQUID) magnetometer, J. Geophys. Res., 105, 25,70925,727.
  • Emilia, D. A. (1973), Equivalent sources used as an analytic base for processing total magnetic field profiles, Geophysics, 38, 339348.
  • Emilia, D. A., and R. L. Massey (1974), Magnetization estimation for nonuniformly magnetized seamounts, Geophysics, 39, 223231.
  • Fagaly, R. (2006), Superconducting quantum interference device instruments and applications, Rev. Sci. Instrum., 77, 101101.
  • Fleet, E. F., S. Chatraphorn, F. C. Wellstood, and C. Eylem (2001), Determination of magnetic properties using a room-temperature scanning SQUID microscope, IEEE Trans. Appl. Supercond., 11, 11801183.
  • Fong, L. E., J. R. Holzer, K. K. McBride, E. A. Lima, F. Baudenbacher, and M. Radparvar (2004), Multiloop low-transition-temperature SQUID sensor for imaging biomagnetic fields with submillimeter resolution, Appl. Phys. Lett., 84, 31903193.
  • Fong, L. E., J. R. Holzer, K. K. McBride, E. A. Lima, and F. Baudenbacher (2005), High resolution room-temperature sample scanning superconducting interference device microscope configurable for geological and biomagnetic applications, Rev. Sci. Instrum., 76, 053703.
  • Fuller, M., and S. M. Cisowski (1987), Lunar paleomagnetism, in Geomagnetism, edited by J. A. Jacobs, pp. 307455, Academic Press, Orlando.
  • Fuller, M., W. S. Goree, and W. L. Goodman (1985), An introduction to the use of SQUID magnetometers in biomagnetism, in Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism, edited by J. L. Kirschvink et al., pp. 103151, Plenum Press, New York.
  • Gattacceca, J., M. Boustie, B. P. Weiss, P. Rochette, E. A. Lima, L. E. Fong, and F. J. Baudenbacher (2006), Investigating impact demagnetization through laser impacts and SQUID microscopy, Geology, 34, 333336.
  • Gee, J., H. Staudigel, and L. Tauxe (1989), Contribution of induced magnetization to magnetization of seamounts, Nature, 342, 170173.
  • Hansen, P. C. (1998), Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, 247 pp., Society for Industrial and Applied Mathematics, Philadelphia.
  • Hansen, P. C. (2001), Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems, Version 3.1 for Matlab 6.0, 109 pp., available online at http://www.imm.dtu.dk/~pch.
  • Hildebrand, J. A., and R. L. Parker (1987), Paleomagnetism of Cretaceous Pacific seamounts revisited, J. Geophys. Res., 92, 12,69512,712.
  • Judge, G. G., R. C. Hill, W. E. Griffiths, H. Lutkepohl, and T.-C. Lee (1988), Introduction to the Theory and Practice of Econometrics, Wiley, New York.
  • Ketchen, M. B., J. R. Kirtley, and M. Bhushan (1997), Miniature vector magnetometer for scanning SQUID microscopy, IEEE Trans. Appl. Supercond., 7, 31393142.
  • Kirschvink, J. L. (1992), Uniform magnetic fields and double-wrapped coil systems: Improved techniques for the design of bioelectromagnetic experiments, Bioelectromagnetics, 13, 401411.
  • Kirtley, J. R., and J. P. Wikswo (1999), Scanning SQUID microscopy, Annu. Rev. Mater. Sci., 29, 117148.
  • Kono, M. (1977), Paleomagnetism of DSDP Leg 55 basalts and implications for the tectonics of the Pacific Plate, Initial Rep. Deep Sea Drill. Project, 55, 737758.
  • Kontny, A., C. Vahle, and H. de Wall (2003), Characteristic magnetic behavior of subaerial and submarine lava units from the Hawaiian Scientific Drilling Project (HDSP-2), Geochem. Geophys. Geosyst., 4(2), 8703, doi:10.1029/2002GC000304.
  • Krasa, D. (2002), Partial self-reversal of the NRM in basalts: Identifying the responsible mineral phases, IRM Quarterly, 12, 34.
  • Kress, R., L. Kuhn, and R. Potthast (2002), Reconstruction of a current distribution from its magnetic field, Inverse Problems, 18, 11271146.
  • Labotka, T. C., M. J. Kempa, C. White, J. J. Papike, and J. C. Laul (1980), The lunar regolith: Comparative petrology of the Apollo sites, Proc Lunar Planet. Sci. Conf., 11, 12851305.
  • Langel, R. A., and W. J. Hinze (1998), The Magnetic Field of the Earth's Lithosphere, 429 pp., Cambridge Univ. Press, Cambridge.
  • Langel, R. A., E. V. Slud, and P. J. Smith (1984), Reduction of satellite magnetic anomaly data, J. Geophys., 54, 207212.
  • Lee, T. S., E. Dantsker, and J. Clarke (1996), High-transition temperature superconducting quantum interference device microscope, Rev. Sci. Instrum., 67, 42084215.
  • Lee, S.-Y., J. Mathews, and F. C. Wellstood (2004), Position noise in scanning superconducting quantum interference device microscopy, Appl. Phys. Lett., 84, 50015003.
  • Levine, J., T. A. Becker, R. A. Muller, and P. R. Renne (2005), 40Ar/39Ar dating of Apollo 12 impact spherules, Geophys. Res. Lett., 32, L15201, doi:10.1029/2005GL022874.
  • Lima, E. A., A. Irimia, and J. P. Wikswo (2006), The magnetic inverse problem, in The SQUID Handbook, edited by J. Clarke, and A. I. Braginski, pp. 139267, Wiley-VCH, Weinheim.
  • Mayhew, M. A. (1979), Inversion of satellite magnetic anomaly data, J. Geophys., 45, 119128.
  • Mayhew, M. A. (1982), An equivalent layer magnetization model for the United States derived from satellite altitude magnetic anomalies, J. Geophys. Res., 87, 48374845.
  • Mayhew, M. A., and S. C. Galliher (1982), An equivalent layer magnetization model for the United States derived from Magsat data, Geophys. Res. Lett., 9, 311313.
  • McNutt, M. (1986), Nonuniform magnetization of seamounts: A least squares approach, J. Geophys. Res., 91, 36863700.
  • Nicolosi, I., I. Blanco-Montenegro, A. Pignatelli, and M. Chiappini (2006), Estimating the magnetization direction of crustal structures by means of an equivalent source algorithm, Phys. Earth Planet. Inter., 155, 163169.
  • Nowaczyk, N. R., H.-U. Worm, A. Knecht, and J. H. Hinken (1998), Imaging distribution patterns of magnetic minerals by a novel high-Tc-SQUID-based field distribution measuring system: Applications to Permian sediments, Geophys. J. Int., 132, 721726.
  • Parker, R. L. (1971), The determination of seamount magnetism, Geophys. J. R. Astron. Soc., 24, 321324.
  • Parker, R. L. (1977), Understanding inverse theory, Annu. Rev. Earth Planet. Sci., 5, 3564.
  • Parker, R. L. (1988), A statistical theory of seamount magnetism, J. Geophys. Res., 93, 31053115.
  • Parker, R. L. (1991), A theory of ideal bodies for seamount magnetism, J. Geophys. Res., 96, 16,10116,112.
  • Parker, R. L. (1994), Geophysical Inverse Theory, 386 pp., Princeton Univ. Press, Princeton.
  • Parker, R. L., L. Shure, and J. A. Hildebrand (1987), The application of inverse theory to seamount magnetism, Rev. Geophys., 25, 1740.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992), Numerical Recipes in Fortran 77: The Art of Scientific Computing, 933 pp., Cambridge Univ. Press, Cambridge.
  • Purucker, M. E., T. J. Sabaka, and R. A. Langel (1996), Conjugate gradient analysis: A new tool for studying satellite magnetic data sets, Geophys. Res. Lett., 23, 507510.
  • Rakhmanov, E. A., E. B. Saff, and Y. M. Zhou (1994), Minimal discrete energy on the sphere, Math. Res. Lett., 1, 647662.
  • Roth, B. J., N. G. Sepulveda, and J. P. Wikswo Jr. (1989), Using a magnetometer to image a two-dimensional current distribution, J. Appl. Phys., 65, 361372.
  • Saff, E. B., and A. B. J. Kuijlaars (1997), Distributing many points on a sphere, The Mathematical Intelligencer, 19, 511.
  • Sepulveda, N. G., I. M. Thomas, and J. P. Wikswo (1994), Magnetic susceptibility tomography for three-dimensional imaging of diamagnetic and paramagnetic objects, IEEE Trans. Mag., 30, 50625069.
  • Sharp, W. D., and P. R. Renne (2005), The 40Ar/39Ar dating of core recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii, Geochem. Geophys. Geosyst., 6, Q04G17, doi:10.1029/2004GC000846.
  • Steveling, E. (2006), personal communication.
  • Steveling, E., J. B. Stoll, and M. Leven (2003), Quasi-continuous depth profiles of rock magnetization from magnetic logs in the HSDP-2 borehole, Island of Hawaii, Geochem. Geophys. Geosyst., 4(4), 8708, doi:10.1029/2002GC000330.
  • Tan, S., Y. P. Ma, I. M. Thomas, and J. P. Wikswo (1996), Reconstruction of two-dimensional magnetization and susceptibility distributions from the magnetic field of soft magnetic materials, IEEE Trans. Mag., 32, 230234.
  • Tauxe, L., and J. J. Love (2003), Paleointensity in Hawaiian Scientific Drilling Project Hole (HSDP2): Results from submarine basaltic glass, Geochem. Geophys. Geosyst., 4(2), 8702, doi:10.1029/2001GC000276.
  • Thomas, I. M., T. C. Moyer, and J. P. Wikswo (1992), High resolution magnetic susceptibility imaging of geological thin sections: Pilot study of a pyroclastic sample from the Bishop Tuff, Geophys. Res. Lett., 19, 21392142.
  • Vacquier, V. (1962), A machine method for computing the magnitude and direction of magnetization of a uniformly magnetized body from its shape and a magnetic survey, in Proceedings of the Benedum Earth Magnetism Symposium, edited, pp. 123137, Univ. of Pittsburgh Press, Pittsburgh.
  • von Frese, R. R. B., W. J. Hinze, and L. W. Braile (1981), Spherical Earth gravity and magnetic anomaly analysis by equivalent point source inversion, Earth Planet. Sci. Lett., 53, 6983.
  • Walton, A. W., and P. Schiffman (2003), Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core - 1. Description and paragenesis, Geochem. Geophys. Geosyst., 4(5), 8709, doi:10.1029/2002GC000368.
  • Weiss, B. P., J. L. Kirschvink, F. J. Baudenbacher, H. Vali, N. T. Peters, F. A. MacDonald, and J. P. Wikswo (2000), A low temperature transfer of ALH84001 from Mars to Earth, Science, 290, 791795.
  • Weiss, B. P., F. J. Baudenbacher, J. P. Wikswo, and J. L. Kirschvink (2001), Magnetic microscopy promises a leap in sensitivity and resolution, Eos Trans. AGU, 82, 513518.
  • Weiss, B. P., H. Vali, F. J. Baudenbacher, J. L. Kirschvink, S. T. Stewart, and D. L. Shuster (2002), Records of an ancient Martian magnetic field in ALH84001, Earth Planet. Sci. Lett., 201, 449463.
  • Weiss, B. P., L. E. Fong, E. A. Lima, F. J. Baudenbacher, and H. Vali (2005), Paleointensity of the Martian field from SQUID microscopy, Eos Trans. AGU, 86, Fall Meeting Suppl., Abstract GP41C-04.
  • Wellstood, F. C., Y. Gim, A. Amar, R. C. Black, and A. Mathai (1997), Magnetic microscopy using SQUIDs, IEEE Trans. Appl. Supercond., 7, 31343138.
  • Wikswo, J. P. (1996), The magnetic inverse problem for NDE, in SQUID Sensors: Fundamentals and Frontiers, edited by H. Weinstock, pp. 629695, Kluwer Academic Publishers, Dordrecht.
  • Wikswo, J. P. (2004), SQUIDs remain best tools for measuring brain's magnetic field, Physics Today, 57, 1517.