SEARCH

SEARCH BY CITATION

References

  • Achard, V. (1991), Trois problèmes clés de l'analyse tridimentionelle de la structure thermodynamique de l'atmosphère par satellite: Mesure du contenu en ozone, classification des masses d'air, modélisation hyper-rapide du transfert radiatif, Ph.D. thesis, Univ. Pierre et Marie Curie, Paris VI, Paris.
  • Aires, F., C. Prigent, W. B. Rossow, and M. Rothstein (2001), A new neural network approach including first-guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature and emissivities over land from satellite microwave observations, J. Geophys. Res., 106(D14), 14,88714,907.
  • Aires, F., A. Chedin, N. Scott, and W. B. Rossow (2002a), A regularized neural network approach for retrieval of atmospheric and surface temperatures with the IASI instrument, J. Appl. Meteorol., 41(2), 144159.
  • Aires, F., W. B. Rossow, N. A. Scott, and A. Chédin (2002b), Remote sensing from the infrared atmospheric sounding interferometer instrument: 1. Compression, denoising, and first-guess retrieval algorithms, J. Geophys. Res., 107(D22), 4619, doi:10.1029/2001JD000955.
  • Bellman, R. (1961), Adaptative Control Processes, Princeton Univ. Press, Princeton, N. J.
  • Chédin, A., N. A. Scott, C. Wahiche, and P. Moulinier (1985), The improved initialization inversion method: A high-resolution physical method for temperature retrievals from satellites of the TIROS-N series, J. Clim. Appl. Meteorol., 24, 128143.
  • Chevallier, F., F. Chéruy, N. A. Scott, and A. Chédin (1998), A neural network approach for a fast and accurate computation of longwave radiative budget, J. Appl. Meteorol., 37, 13851397.
  • Chevallier, F., A. Chédin, F. Chéruy, and J. J. Morcrette (2000), TIGR-like atmospheric profile database for accurate radiative flux computation, Q. J. R. Meteorol. Soc., 126, 777785.
  • Chevallier, F., S. Di Michele, and A. P. McNally (2007), Diverse profile datasets from the ECMWF 91-level short-range forecasts, Rep. NWPSAF-EC-TR-010, Numer. Weather Predict. Satell. Appl. Facil., Met Off., Exeter, U. K.
  • Cordisco, E., C. Prigent, and F. Aires (2006), Snow characterization at a global scale with passive microwave satellite observations, J. Geophys. Res., 111, D19102, doi:10.1029/2005JD006773.
  • Crone, L., and D. Crosby (1995), Statistical applications of a metric on subspaces to satellite meteorology, Technometrics, 37(3), 324328.
  • Cybenko, G. (1989), Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst., 2, 303314.
  • Desbois, M., G. Seze, and G. Szejwach (1982), Automatic classification of clouds on METEOSAT imagery: Application to high-level clouds, J. Appl. Meteorol., 21(3), 401412.
  • Escobar, J. (1993), Base de données pour la restitution de paramètres atmosphériques à l'échelle globale; étude sur l'inversion par réseaux de neurones des données des sondeurs verticaux atmosphériques satellitaires présents et à venir, Ph.D. thesis, Univ. Denis Diderot, Paris VII, Paris.
  • Eyre, J. R. (1991), A fast radiative transfer model for satellite sounding systems, ECMWF Res. Dep. Tech. Memo., 176, Eur. Cent. for Med.-Range Weather Forecasts, Reading, U. K.
  • Franquet, S. (2003), Contribution à l'étude dy cycle hydrologique par radiométrie hyperfréquence: Algorithmes de restitution (réseaux de neurones) et validation pour la vapeur d'eau (instrument AMSU, SAPHIR) et les précipitations (AMSU, Radars au sol Baltrad), Ph.D. thesis, Univ. Paris-Diderot, Paris VII, Paris, 3 March.
  • Gelman, A., J. B. Carlin, D. B. Stern, and D. B. Rubin (2003), Bayesian Data Analysis, 2nd edition, 696 pp., CRC Press, Boca Raton, Fla.
  • Geman, S., E. Bienenstock, and R. Doursat (1992), Neural networks and the bias-variance dilema, Neural Comput., 1(4), 158.
  • Goodrum, G., K. B. Kidwell, and W. Winston (2000), NOAA KLM User's Guide, NOAA, Siver Spring, Md.
  • Gordon, N. D., J. R. Norris, C. P. Weaver, and S. A. Klein (2005), Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model, J. Geophys. Res., 110, D15S17, doi:10.1029/2004JD005027.
  • Hilbert, D., and S. Cohn-Vossen (1952), Geometry and the Imagination, 357 pp., Am. Math. Soc., Providence, R. I.
  • Hornik, K., M. Stinchcombe, and H. White (1989), Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359366.
  • Huber, P. J. (1981), Robust Statistics, 320 pp., John Wiley, New York.
  • Jakob, C., G. Tselioudis, and T. Hume (2005), The radiative, cloud, and thermodynamic properties of the major tropical western Pacific cloud regimes, J. Clim., 8, 12031215, doi:10.1175/JCLI3326.1.
  • Jolliffe, I. T. (2002), Principal Component Analysis, 2nd ed., 487 pp., Springer, New York.
  • Kohonen, T. (1984), Self-Organization and Associative Memory, Springer, New York.
  • Kolmogorov, A. (1957), On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition, Dokl. Akad. Nauk SSSR, 114, 953956.
  • Kummerow, C., Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. McCollum, R. Ferraro, G. Petty, D.-B. Shin, and T. T. Wilheit (2001), The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors, J. Appl. Meteorol., 40(11), 18011820.
  • Lloyd, S. P. (1992), Least squares quantization in PCM, IEEE Trans. Inf. Theory, 28(2), 129137.
  • Matricardi, M., F. Chevallier, and S. Tjemkes (2001), An improved general fast radiative transfer model for the assimilation of radiance observations, ECMWF Res. Dep. Tech. Memo., 345, Eur. Cent. for Med.-Range Weather Forecasts, Reading, U. K. (Available at http://www.ecmwf.int/publications).
  • Milligan, G. W., and M. C. Cooper (1985), An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50(2), 159179.
  • Mimmack, G. M., S. J. Mason, and J. S. Galpin (2001), Choice of distance matrices in cluster analysis: Defining regions, J. Clim., 14, 27902797.
  • Moody, J., and C. J. Darken (1989), Fast learning in networks of locally-tuned processing units, Neural Comput., 1(2), 281294.
  • Moore, D. S., and G. P. McCabe (2006), Introduction to the Practice of Statistics, 5th ed., W. H. Freeman, New York.
  • Omar, A. H., J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick (2005), Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements, J. Geophys. Res., 110, D10S14, doi:10.1029/2004JD004874.
  • Press, W. H., B. P. Flannery, and S. A. Teukolsky (2002), Numerical Recipes, in C: The Art of Scientific Computing, 2nd ed., 1032 pp., Cambridge Univ. Press, New York.
  • Prigent, C., F. Aires, W. B. Rossow, and E. Matthews (2001), Joint characterization of the vegetation by satellite observations from visible to microwavelengths: A sensitivity analysis, J. Geophys. Res., 106(D18), 20,66520,685.
  • Rendell, L., H. Whitehead, and A. Coakes (2005), Do breeding male sperm whales show preferences among vocal clans of females? Mar. Mammal Sci., 21(2), 317322, doi:10.1111/j.1748-7692.2005.tb01231.x.
  • Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding—Theory and Practice, World Sci., London.
  • Rosenkrantz, P. (2001), Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements, IEEE Trans. Geosci. Remote Sens., 39, 24292435.
  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986), Learning internal representations by error propagation, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. I, Foundations, edited by D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, pp. 318362, MIT Press, Cambridge, Mass.
  • Saunders, R. W., M. Matricardi, and P. Brunel (1999), An improved fast radiative transfer model for assimilation of satellite radiance observations, Q. J. R. Meteorol. Soc., 125, 14071425.
  • Shi, L. (2001), Retrieval of atmospheric temperature profiles from AMSU-A measurements using a neural network approach, J. Atmos. Oceanic Technol., 18, 340347.
  • Simmons, A. J., and J. K. Gibson (2000), The ERA40 project plan, Eur. Cent. for Med.-Range Weather Forecasts, Reading, U. K.
  • Tarantola, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam.
  • Thépaut, J.-N., and P. Moll (1990), Variational inversion of simulated TOVS radiancs using the adjoint technique, Q. J. R. Meteorol. Soc., 116(496), 14251448.
  • Vapnik, V. N., and A. Y. Chervonenkis (1971), On the uniform convergence of relative frequencies of events to their relative frequencies of events to their probabilities, Theory Probab. Appl., 16, 264280.
  • Vrac, M., A. Chédin, and E. Diday (2005), Clustering a global field of atmospheric profiles by mixture decomposition of copulas, J. Atmos. Oceanic Technol., 22, 14451459.