SEARCH

SEARCH BY CITATION

References

  • Alexander, W. J. R. (2005), Linkages between solar activity and climate responses, Energy Environ., 16, 239253.
  • Araguás-Araguás, L., K. Froehlich, and K. Rozanski (1998), Stable isotope composition of precipitation over southeast Asia, J. Geophys. Res., 103, 721728.
  • Arnold, F., K. G. Carslaw, J. Kirkby, M. Kulmala, M. Lockwood, J. H. Seinfeld, H. Svensmark, and P. Wagner (2004), CERN Proposal SPSC/P317; the CLOUD experiment, CERN-SPSC-2004-023, Eur. Organ. for Nucl. Res., Geneva. (Available at http://cloud.web.cern.ch/cloud/documents_cloud/cloud_memo.pdf).
  • Baede, A. P. M., E. Ahlonsoi, and D. Schimel (2001), The climate system: An overview, in Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 8598, Cambridge Univ. Press, New York.
  • Bailey, L. F. (1940), Some water relations of three western grasses I. The transpiration ratio, Am. J. Bot., 27, 122128.
  • Barth, J., and J. Veizer (2004), Water mixing in a St. Lawrence river embayment to outline potential sources of pollution, Appl. Geochem., 19, 16371641.
  • Berner, R. A. (2003), The long-term carbon cycle, fossil fuels and atmospheric composition, Nature, 426, 323326.
  • Berry, S. L., and M. L. Roderick (2004), Gross primary productivity and transpiration flux of the Australian vegetation from 1788 to 1988 AD: Effects of CO2 and land use change, Global Change Biol., 10, 18841898.
  • Bhattacharyya, S., and R. Narasimha (2005), Possible association between Indian monsoon rainfall and solar activity, Geophys. Res. Lett., 32, L05813, doi:10.1029/2004GL021044.
  • Briggs, L. J., and H. L. Shantz (1914), Relative water requirements of plants, J. Agric. Res., 3, 163.
  • Buchmann, N., and E.-D. Schulze (1999), Net CO2 and H2O fluxes of terrestrial ecosystems, Global Biogeochem. Cycles, 13(3), 751760.
  • Chahine, M. T. (1992), The hydrological cycle and its influence on climate, Nature, 359, 373380.
  • Chen, D.-X., and M. B. Coughenour (2004), Photosynthesis, transpiration, and primary productivity: Scaling up from leaves to canopies and regions using process models and remotely sensed data, Global Biogeochem. Cycles, 18, GB4033, doi:10.1029/2002GB001979.
  • Choudhury, B. J. (2000), Seasonal and interannual variations in total evaporation and their relations with precipitation, net radiation, and net carbon accumulation for the Gediz basin area, J. Hydrol., 229, 7786.
  • Choudhury, B. J., N. E. DiGirolamo, J. Susskind, W. L. Darnell, S. K. Gupta, and G. Asrar (1998), A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data II. Regional and global patterns of seasonal and annual variations, J. Hydrol., 205, 186204.
  • Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, J. Ni, and E. A. Holland (2001), NPP Tropical Forest: Consistent Worldwide Site Estimates, 1967–1999 Data Set, http://www.daac.ornl.gov, Oak Ridge Natl. Lab. Distrib. Active Arch. Cent., Oak Ridge, Tenn.
  • Clark, I. D., and P. Fritz (1997), Environmental Isotopes in Hydrogeology, 328 pp., CRC Press, Boca Raton, Fla.
  • Craig, H. (1961), Isotope variations in meteoric waters, Science, 133, 17021703.
  • Craig, H., and L. Gordon (1965), Deuterium and oxygen-18 variation in the ocean and marine atmosphere, in Stable Isotopes in Oceanographic Studies and Paleotemperatures, edited by E. Tongiorgi, pp. 9130, Lab. di Geol. Nucl., Cons. Naz. delle Rich., Pisa, Italy.
  • Daansgard, W. (1964), Stable isotopes in precipitation, Tellus, 16, 436468.
  • Dai, A., and K. E. Trenberth (2002), Estimates of freshwater discharge from continents: Latitudinal and seasonal variations, J. Hydrometeorol., 3, 660687.
  • Eva, H. D., et al. (2003), The Land Cover Map for South America in the Year 2000, GLC2000 database, Eur. Comm. Joint Res. Cent., Brussels. (Available at http://www-gem.jrc.it/glc2000).
  • Farquhar, G. D., K. T. Hubick, A. G. Condon, and R. A. Richards (1989), Carbon isotope fractionation and plant water-use efficiency, in Stable Isotopes in Ecological Research, edited by P. W. Rundel, J. R. Ehleringer, and K. A. Nagy, Springer, New York.
  • Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington (2005), The importance of land-cover change in simulating future climates, Science, 310, 16741678.
  • Fekete, B. M., J. J. Gibson, P. Aggarwal, and C. J. Vörösmarty (2006), Application of isotope tracers in continental scale hydrological modeling, J. Hydrol., 330, 440456.
  • Ferguson, P. R. (2007), Aqueous and isotope geochemistry of the Fly River, Papua New Guinea: Coupling of the water and carbon cycles in tropical rainforest biomes, Ph.D. thesis, 180 pp., Dept. of Earth Sci., Univ. of Ottawa, Ottawa, Canada.
  • Ferguson, P. R., N. Weinrauch, L. I. Wassenaar, B. Mayer, and J. Veizer (2007), Isotope constraints on water, carbon, and heat fluxes from the northern Great Plains region of North America, Global Biogeochem. Cycles, 21, GB2023, doi:10.1029/2006GB002702.
  • Fleischbein, K., W. Wilcke, C. Valarezo, W. Zech, and K. Knoblick (2006), Water budgets of three small catchments under montane forest in Ecuador: Experimental and modeling approach, Hydrol. Processes, 20, 24912507.
  • Foley, J. A., M. H. Costa, C. Delire, N. Ramankutty, and P. Snyder (2003), Green surprise? How terrestrial ecosystems could affect Earth's climate, Front. Ecol. Environ., 1, 3844.
  • Freitag, H., P. R. Ferguson, K. Dubois, E. K. Hayford, V. von Vordzogbe, and J. Veizer (2007), Water and carbon dioxide fluxes from savannah ecosystems of the Volta River watershed, West Africa, Global Planet. Change, doi:10.1016/j.gloplacha.2007.08.003, in press.
  • Friedman, I., and J. R. O'Neil (1977), Compilation of stable isotope fractionation factors of geochemical interest, U.S. Geol. Surv. Prof. Pap., 440-KK, 49 pp.
  • Froehlich, K., J. J. Gibson, and P. K. Aggarwal (2002), Deuterium excess in precipitation and its climatological significance, in Study of Environmental Change Using Isotope Techniques, C&S Pap. Ser. 13P, pp. 5465, Int. At. Energy Agency, Vienna.
  • Gammons, C. H., S. R. Poulson, D. A. Pellicori, P. J. Reed, A. J. Roesler, and E. M. Petrescu (2006), The hydrogen and oxygen isotope composition of precipitation, evaporated mine water, and river water in Montana, U.S.A. J. Hydrol., 328, 319330.
  • Gat, J. R., and C. Bowser (1991), The heavy isotope enrichment of water in coupled evaporative systems, in Stable Isotope Geochemistry, edited by H. P. Taylor, J. R. O'Neil, and I. R. Kaplan, Spec. Publ. Geochem. Soc., 3, 159168.
  • Gat, J. R., and E. Matsui (1991), Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model, J. Geophys. Res., 96, 13,17913,188.
  • Gibson, J. J. (2002), Short-term evaporation and water budget comparisons in shallow arctic lakes using non-steady isotope mass balance, J. Hydrol., 264, 247266.
  • Gibson, J. J., and T. W. D. Edwards (2002), Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada, Global Biogeochem. Cycles, 16(2), 1026, doi:10.1029/2001GB001839.
  • Gibson, J. J., T. W. D. Edwards, G. G. Bursey, and T. D. Prowse (1993), Estimating evaporation using stable isotopes: Quantitative results and sensitivity analysis for two catchments in northern Canada, Nord. Hydrol., 24, 7994.
  • Gibson, J. J., T. W. D. Edwards, S. J. Birks, N. A. St Amour, W. M. Buhay, P. McEachern, B. B. Wolfe, and D. L. Peters (2005), Progress in isotope tracer hydrology in Canada, Hydrol. Processes, 19, 303327.
  • Gonfiantini, R. (1986), Environmental isotopes in lake studies, in Handbook of Environmental Isotope Geochemistry, edited by P. Fritz, and J. C. Fontes, pp. 113168, Elsevier Sci., Amsterdam.
  • Gray, L. J., J. D. Haigh, and R. G. Harrison (2005), The influence of solar changes on the Earth's climate, Hadley Centre Tech. Note 62, 81 pp., Hadley Cent., Met Off., London. (Available at http://www.met-office.gov.UK/research/hadleycentre/pubs/HCTN/HCTN_62.pdf).
  • Heldt, H.-W. (2005), Plant Biochemistry, 656 pp., Elsevier, New York.
  • Henderson-Sellers, A. (2006), Improving land-surface parameterization schemes using stable water isotopes: Introducing the ‘iPILPS’ initiative, Global Planet. Change, 51, 324.
  • Henderson-Sellers, A., K. McGuffie, D. Noone, and P. Irranejad (2004), Using stable water isotopes to evaluate basin-scale simulations of water budgets, J. Hydrometeorol., 5, 805822.
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (2001), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the IPCC Third Assessment Report, 892 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Huete, A. R., K. Didan, Y. E. Shimabukuro, P. Ratana, S. R. Saleska, L. R. Hutyra, W. Yang, R. R. Nemani, and R. Myneni (2006), Amazon rainforests green-up with sunlight in dry season, Geophys. Res. Lett., 33, L06405, doi:10.1029/2005GL025583.
  • Huxman, T. E., et al. (2004), Convergence across biomes to a common rain-use efficiency, Nature, 429, 651654.
  • Jouzel, J. (2006), Water stable isotopes: Atmospheric composition and applications in polar ice core studies, in Treatise on Geochemistry, vol. 4, The Atmosphere, edited by R. F. Keeling, Elsevier-Pergamon, Oxford, U. K.
  • Kandel, R., and M. Viollier (2005), Planetary radiation budgets, Space Sci. Rev., 120, 126.
  • Kanipe, J. (2006), Climate change: A cosmic connection, Nature, 443, 141143.
  • Karim, A., J. Veizer, and J. Barth (2007), Net ecosystem production in the Great Lakes Basin and its implications for the North American missing carbon sink: A hydrological and stable isotope approach, Global Planet. Change, doi:10.1016/j.gloplacha.2007.08.004, in press.
  • Knapp, A. K., and M. D. Smith (2001), Variation among biomes in temporal dynamics of aboveground primary production, Science, 291, 481484.
  • Kristjánsson, J. E., A. Staple, J. Kristiansen, and E. Kaas (2002), A new look at possible connections between solar activity, clouds and climate, Geophys. Res. Lett., 29(23), 2107, doi:10.1029/2002GL015646.
  • Kuchment, L. S., V. N. Demidov, and Z. P. Startseva (2006), Coupled modeling of the hydrological and carbon cycles in the soil-vegetation-atmosphere system, J. Hydrol., 323, 421.
  • Latifovic, R., Z. Zhu, J. Cihlar, and C. Giri (2002), Land cover of North America 2000, Can. Cent. for Remote Sensing, Nat. Resour. Canada, Ottawa.
  • Law, B. E., et al. (2002), Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation, Agric. Forest Meteorol., 113, 97120.
  • Lean, J. (2005), Living with a variable Sun, Phys. Today, 58, 3238.
  • Lee, D., and J. Veizer (2003), Water and carbon cycles in the Mississippi River basin: Potential implications for the Northern Hemisphere residual terrestrial sink, Global Biogeochem. Cycles, 17(2), 1037, doi:10.1029/2002GB001984.
  • Leigh, E. G. (1999), Tropical Forest Ecology: A View From Barro Colorado Island, 245 pp., Oxford Univ. Press, New York.
  • Liu, W. T., X. Xie, W. Tang, and V. Zlotnicki (2006), Spacebased observations of oceanic influence on the annual variation of South American water balance, Geophys. Res. Lett., 33, L08710, doi:10.1029/2006GL025683.
  • Lockwood, M., R. Stamper, and M. N. Wild (1999), A doubling of the Sun's coronal magnetic field during the past 100 years, Nature, 399, 437439.
  • Machavaram, M. V., and R. V. Krishnamurthy (1995), Earth surface evaporative process: A case study from the Great Lakes region of the United States based on deuterium excess in precipitation, Geochim. Cosmochim Acta., 59, 42794283.
  • Marsh, N. D., and H. Svensmark (2003), Solar influence on the Earth's climate, Space Sci. Rev., 107, 317325.
  • Martinelli, L. A., J. R. Gat, P. B. De Camargo, L. L. Lara, and J. P. H. B. Ometto (2004), The Piracicaba river basin: Isotope hydrology of a tropical river basin under anthropogenic stress, Isotopes Environ. Health Stud., 40, 4556.
  • Masle, J., S. R. Gilmore, and G. D. Farquhar (2005), The ERECTA gene regulates plant transpiration efficiency in Arabidopsis, Nature, 436, 866870, doi:10.1038/nature03835.
  • Mayaux, P., E. Bartholomé, S. Fritz, and A. Beleward (2004), A new land-cover map of Africa for the year 2000, J. Biogeogr., 31, 861877.
  • Mayr, C., et al. (2006), Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes (δ18O, δ2H), J. Hydrol., doi:10.1016/j.jhydrol.2006.09.025.
  • McGuffie, K., and A. Henderson-Sellers (2004), Stable water isotope characterization of human and natural impacts on land-atmosphere exchanges in the Amazon Basin, J. Geophys. Res., 109, D17104, doi:10.1029/2003JD004388.
  • Miller, N. L., et al. (2005), The DOE water cycle pilot study, Bull. Am. Meteorol. Soc., 86, 359374.
  • Mitchell, J. F. B., D. J. Karoly, G. C. Hegerl, F. W. Zwiers, M. R. Allen, and J. Marengo (2001), Detection of climate change and attribution of causes, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the IPCC Third Assessment Report, edited by J. T. Houghton et al., pp. 695738, Cambridge Univ. Press, Cambridge, U. K.
  • Moreira, M. Z., L. S. L. Sternberg, L. A. Martinelli, R. L. Victoria, E. M. Barbosa, L. C. M. Bonates, and D. C. Nepstad (1997), Contribution of transpiration to forest ambient vapor based on isotope measurements, Global Change Biol., 3, 439450.
  • Myneni, R. B., et al. (2007), Large seasonal swings in leaf area of Amazon rainforests, Proc. Natl. Acad. Sci. U.S.A., 104, 48204823, doi:10.1073/pnas.0611338104.
  • Myre, A., and C. Hillaire-Marcel (2004), Isotopic monitoring (2H, 18O) of the St. Lawrence and Ottawa rivers between 1997 and 2003—Links with interannual climatic variability and hydrological processes in their catchment basins, Eos Trans. AGU, 85(17), Jt. Assem. Suppl., Abstract H21A-05.
  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running (2002a), Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300, 15601563.
  • Nemani, R., M. White, P. Thornton, K. Nishida, S. Reddy, J. Jenkins, and S. Running (2002b), Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States, Geophys. Res. Lett., 29(10), 1468, doi:10.1029/2002GL014867.
  • New, M., M. Hulme, and P. Jones (2000), Representing twentieth-century space-time climate variability Part II: Development of 1901–1996 monthly grids of terrestrial surface climate, J. Clim., 13, 22172238.
  • Nobel, P. S. (2005), Physicochemical and Environmental Plant Physiology, 3rd ed., 540 pp., Elsevier Acad., Burlington, Mass.
  • Nobre, C. A., M. Assuncão Silva Dias, A. D. Culf, J. Polcher, J. H. Gash, J. A. Marengo, and R. Avissar (2004), The Amazonian climate, in Vegetation, Water, Humans, and the Climate, edited by P. Kabat, pp. 7992, Springer, New York.
  • Pallé, E., P. Montañés-Rodriguez, P. R. Goode, S. E. Koonin, M. Wild, and S. Casadio (2005), A multi-data comparison of shortwave climate forcing changes, Geophys. Res. Lett., 32, L21702, doi:10.1029/2005GL023847.
  • Perry, C. A. (2007), Evidence for a physical linkage between galactic cosmic rays and regional climate series, Adv. Space Res., 40(3), 353364, doi:10.1016/f.asr.2007.02.079.
  • Perry, G. D., P. B. Duffy, and N. L. Miller (1996), An extended data set of river discharges for validation of general circulation models, J. Geophys. Res., 101, 21,33921,350.
  • Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T. Nakajima, G. Y. Shi, and S. Solomon (2001), Radiative forcing of climate change, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the IPCC Third Assessment Report, edited by J. T. Houghton et al., pp. 349416, Cambridge Univ. Press, Cambridge, U. K.
  • Reid, G. C. (2000), Solar variability and the Earth's climate: Introduction and overview, Space Sci. Rev., 94, 111.
  • Rozanski, K., L. Araguas-Araguas, and R. Gonfiantini (1993), Isotopic patterns in modern global precipitation, in Continental Isotopic Indicators of Climate, Geophys. Monogr. Ser., vol. 78, edited by P. K. Swart et al., pp. 137, AGU, Washington, D. C.
  • Ruddiman, W. F. (2001), Earth's Climate: Past and Future, 465 pp., W.H. Freeman, New York.
  • Saleska, S. R., et al. (2003), Carbon in Amazon forests: Unexpected seasonal fluxes and disturbance-induced losses, Science, 302, 15541557.
  • Scherer, K., et al. (2006), Interstellar-terrestrial relations: Variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives and climate, Space Sci. Rev., 127(1–4), 327465, doi:10.1007/s11214-006-9126-6.
  • Sellers, P. J., et al. (1997), Modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science, 275, 502509.
  • Simpson, H. J., and A. L. Herczeg (1991), Stable isotopes as an indicator of evaporation in the River Murray, Australia, Water Resour. Res., 27, 19251935.
  • Sinclair, T. R., C. B. Tanner, and J. M. Bennett (1984), Water-use efficiency in crop production, BioScience, 1, 3640.
  • Stibig, H.-J., R. Upik, R. Beuchle, Hildanus, and S. Mubareka (2003), The Land Cover Map for South East Asia in the Year 2000, GLC2000 database, Eur. Comm. Joint Res. Cent., Brussels. (Available at http://www.gvm.jrc.it/glc2000).
  • Stocker, F., et al. (2001), Physical climate processes and feedbacks, in Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the IPCC Third Assessment Report, edited by J. T. Houghton et al., pp. 417470, Cambridge Univ. Press, Cambridge, U. K.
  • Svensmark, H., J. O. Pederson, N. D. Marsh, M. B. Enghoff, and U. I. Uggerhøj (2006), Experimental evidence for the role of ions in particle nucleation under atmospheric conditions, Proc. R. Soc. London, Ser. A, 463(2078), 385396, doi:10.1098/rspa.2006.1773.
  • Telmer, K., and J. Veizer (2000), Isotopic constraints on the transpiration, evaporation, energy, and gross primary production budgets of a large boreal watershed: Ottawa River basin, Canada, Global Biogeochem. Cycles, 14(1), 149166.
  • Twining, J., D. Stone, C. Tadros, A. Henderson-Sellers, and A. Williams (2006), Moisture isotopes in the biosphere and atmosphere (MIBA) in Australia: A priori estimates and preliminary observations of stable water isotopes in soil, plant and vapour for the Tumbarumba Field Campaign, Global Planet. Change, 51, 5972.
  • Valev, D. (2006), Statistical relationship between surface air temperature anomalies and the solar and geomagnetic activity indices, Phys. Chem. Earth, 31, 109112.
  • Veizer, J. (2005), Celestial climate driver: A perspective from four billion years of the carbon cycle, Geosci. Can., 32, 1328.
  • Vieira, L. E. A., and L. A. da Silva (2006), Geomagnetic modulation of clouds effects in the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic ray effects, Geophys. Res. Lett., 33, L14802, doi:10.1029/2006GL026389.
  • Vörösmarty, C. J., B. Fekete, and B. A. Tucker (1996), River Discharge Database, Version 1.0 (RivDIS v1.0), vol. 0–6, A contribution to IHP-V Theme 1, Technical Documents in Hydrology Series, UNESCO, Paris.
  • Welp, L. R., J. T. Randerson, J. C. Finlay, S. P. Davydov, G. M. Zimova, A. I. Davydova, and S. A. Zimov (2005), A high-resolution time series of oxygen isotopes from the Kolyma River: Implications for the seasonal dynamics of discharge and basin-scale water use, Geophys. Res. Lett., 32, L14401, doi:10.1029/2005GL022857.
  • Wolfe, B. W., T. L. Karst-Riddoch, R. I. Hall, T. W. D. Edwards, M. C. English, R. Palmini, S. McGowan, P. R. Leavitt, and S. R. Vardy (2006), Classification of hydrological regimes of northern floodplain basis (Peace-Athabasca Delta) from analysis of stable isotopes (δ18O, δ2H) and water chemistry, Hydrol. Processes, 21, 151168.
  • Zeng, N. (1999), Seasonal cycle and inter annual variability in the Amazon hydrologic cycle, J. Geophys. Res., 104, 90979106.
  • Zheng, D. L., S. D. Prince, and R. Wright (2001), NPP Multi-biome: Gridded estimates from selected regions worldwide, 1989–2001, Oak Ridge Natl. Lab. Distrib. Active Archive Cent., Oak Ridge, Tenn. (Available at http://www.daac.ornl.gov).
  • Zheng, D. L., S. D. Prince, and R. Wright (2003), Terrestrial net primary productivity estimates for 0.5° grid cells from field observations—A contribution to global biogeochemical modeling, Global Change Biol., 9, 4664.
  • Zoebl, D. (2006), Is water productivity a useful concept in agricultural water management? Agric. Water Manage., 84, 265273.