SEARCH

SEARCH BY CITATION

References

  • Alley, R. B., et al. (2002), Abrupt Climate Changes: Inevitable Surprises, 221 pp., Natl. Academy Press, Washington D. C.
  • Bluman, G. W., and S. Kumei (1989), Symmetries and Differential Equations, Applied Mathematical Sciences, vol. 81, 412 pp., Springer, New York.
  • Boer, G. J., and B. Yu (2003), Climate sensitivity and climate state, Clim. Dyn., 21, 167176.
  • Cavalcante, J. A., and K. Tenenblat (1988), Conservation laws for nonlinear evolution equations, J. Math. Phys., 29, 10441049.
  • Corless, R. M., C. Essex, and M. A. H. Nerenberg (1991), Numerical methods can suppress chaos, Phys. Lett. A, 157, 2736.
  • Duderstadt, J., and W. R. Martin (1979), Transport Theory, 613 pp., John Wiley, New York.
  • Essex, C. (1991), What do climate models tell us about global warming? Pure Appl. Geophys., 135, 125133.
  • Essex, C., and M. Davison (1998), Operator uncertainty as a pseudo error in initial conditions, Open Syst. Inf. Dyn., 5, 125138.
  • Goodstein, D. L. (1975), States of Matter, 500 pp., Prentice-Hall, New York.
  • Hairer, E., C. Lubich, and G. Wanner (2006), Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations, Springer Ser. in Comput. Math., vol. 31, 2nd ed., Springer, Berlin.
  • James, I. N., and P. M. James (1992), Spatial structure of ultra-low-frequency variability in a simple atmospheric circulation model, Q. J. R. Meteorol. Soc., 118, 12111233.
  • Mansfield, E. L. (2006), Discrete Noether theorems, in Foundations of Computational Mathematics, Santander 2005, London Math. Soc. Lecture Note Ser., vol. 331, edited by L. M. Pardo et al., pp. 230254, Cambridge Univ. Press, Cambridge, U. K.
  • McAvaney, B. J., C. Covey, S. Joussaume, V. Kattsov, A. Kitoh, W. Ogana, A. J. Pitman, A. J. Weaver, R. A. Wood, and Z.-C. Zhao (2001), Model evaluation, in Climate Change 2001: The Scientific Basis—Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., chap. 8, pp. 473513, Cambridge Univ. Press, Cambridge, U. K.
  • Moore, B., W. L. Gates, L. J. Mata, and A. Underdal (2001), Advancing our understanding, in Climate Change 2001: The Scientific Basis—Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., chap. 14, pp. 772785, Cambridge Univ. Press, Cambridge, U. K.
  • Olver, P. J. (2000), Applications of Lie Groups to Differential Equations, 2nd ed., 513 pp., Springer, New York.
  • Palmer, T. N. (1999), A nonlinear perspective on climate prediction, J. Clim., 12, 575591.
  • Rasband, N. S. (1990), Chaotic Dynamics of Nonlinear Systems, 230 pp., Wiley-Interscience, New York.
  • Schneider, S. H. (2004), Abrupt non-linear climate change, irreversibility and surprise, Global Environ. Change, 14, 245258.
  • Sen, T., and M. Tabor (1990), Lie symmetries of the Lorenz model, Physica D, 44, 313339.