Manifestation of remote response over the equatorial Pacific in a climate model



[1] In this paper we examine the simulations over the tropical Pacific Ocean from long-term simulations of two different versions of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model that have a different global distribution of the inversion clouds. We find that subtle changes made to the numerics of an empirical parameterization of the inversion clouds can result in a significant change in the coupled climate of the equatorial Pacific Ocean. In one coupled simulation of this study we enforce a simple linear spatial filtering of the diagnostic inversion clouds to ameliorate its spatial incoherency (as a result of the Gibbs effect) while in the other we conduct no such filtering. It is found from the comparison of these two simulations that changing the distribution of the shallow inversion clouds prevalent in the subsidence region of the subtropical high over the eastern oceans in this manner has a direct bearing on the surface wind stress through surface pressure modifications. The SST in the warm pool region responds to this modulation of the wind stress, thus affecting the convective activity over the warm pool region and also the large-scale Walker and Hadley circulation. The interannual variability of SST in the eastern equatorial Pacific Ocean is also modulated by this change to the inversion clouds. Consequently, this sensitivity has a bearing on the midlatitude height response. The same set of two experiments were conducted with the respective versions of the atmosphere general circulation model uncoupled to the ocean general circulation model but forced with observed SST to demonstrate that this sensitivity of the mean climate of the equatorial Pacific Ocean is unique to the coupled climate model where atmosphere, ocean and land interact. Therefore a strong case is made for adopting coupled ocean-land-atmosphere framework to develop climate models as against the usual practice of developing component models independent of each other.