SEARCH

SEARCH BY CITATION

References

  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288, 10421047.
  • Albrecht, B. A. (1989), Aerosols, cloud microphysics and fractional cloudiness, Science, 245, 12271230.
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias (2004), Smoking rain clouds over the Amazon, Science, 303, 13371342.
  • Bell, T. L., D. Rosenfeld, K.-M. Kim, J.-M. Yoo, M.-I. Lee, and M. Hahnenberger (2007), Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms, J. Geophys. Res., doi:10.1029/2007JD008623, in press.
  • Carrio, G. G., S. C. van den Heever, and W. R. Cotton (2007), Impact of nucleating aerosol on anvil-cirrus clouds: A modeling study, Atmos. Res., 84, 111131.
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen (2007), A modeling study of aerosol impacts on cloud microphysics and radiative properties, Q. J. R. Meteorol. Soc., 133, 283297.
  • Chou, M.-D. and M. J. Suarez (1994), An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo. 104606, 85 pp.
  • Chou, M.-D., M. J. Suarez, C.-H. Ho, M.-H. Yan, and K.-T. Lee (1998), Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models, J. Clim., 11, 202214.
  • Cooper, W. A., R. Bruintjes, and G. Mather (1997), Calculations pertaining to hygroscopic seeding with flares, J. Appl. Meteorol., 36, 14491469.
  • Ekman, A., C. Wang, J. Wilson, and J. Strom (2004), Explicit simulation of aerosol physics in a cloud-resolving model: A sensitivity study based on an observed convective cloud, Atmos. Chem. Phys., 4, 773791.
  • Ekman, A., C. Wang, J. Storm, and R. Kreici (2006), Explicit simulation of aerosol physics in a cloud-resolving model: Aerosol transport and processing in the free troposphere, J. Atmos. Sci., 63, 682696.
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young (1996), Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, J. Geophys. Res., 101, 915929.
  • Fan, J., R. Zhang, G. Li, W.-K. Tao, and X. Li (2007), Simulations of cumulus clouds using a spectral microphysics cloud-resolving model, J. Geophys. Res., 112, D04201, doi:10.1029/2006JD007688.
  • Ferrier, B. S., J. Simpson, and W.-K. Tao (1996), Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations, Mon. Weather Rev., 124, 21002125.
  • Fovell, R. G., and Y. Ogura (1988), Numerical simulation of a midlatitude squall line in two dimensions, J. Atmos. Sci., 45, 38463879.
  • Fridlind, A. M., et al. (2004), Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei, Science, 304, 718722.
  • Hallett, J., and S. C. Mossop (1974), Production of secondary ice crystals during the riming process, Nature, 249, 2628.
  • Heymsfield, G. M., A. J. Heymsfield, and L. Belcher (2004), Observations of Florida convective storms using dual wavelength airborne radar, paper presented at International Conference on Clouds and Precipitations, Inst. of Atmos. Sci. and Clim., Bologna, Italy, 18 – 23 July .
  • Hudson, J. G. (1984), Cloud condensation nuclei measurements within clouds, J. Clim. Appl. Meteorol., 23, 4251.
  • Hudson, J. G. (1993), Cloud condensation nuclei near marine cumulus, J. Geophys. Res., 98, 26932701.
  • Johnson, R. H., and P. J. Hamilton (1988), The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line, Mon. Weather Rev., 116, 14441472.
  • Jorgensen, D. P., M. A. LeMone, and S. B. Trier (1997), Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface fluxes, J. Atmos. Sci., 54, 19611985.
  • Khain, A., and A. Pokrovsky (2004), Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. part II: Sensitivity study, J. Atmos. Sci., 61, 29632982.
  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Podrovsky, and H. Krugliak (2000), Notes on the state-of-art numerical modeling of cloud microphysics, Atmos. Res., 55, 159224.
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seigert, and V. Phillips (2004), Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. part I: Model description and possible applications, J. Atmos. Sci., 61, 29833001.
  • Khain, A., D. Rosenfeld, and A. Pokrovsky (2005), Aerosol impact on the dynamics and microphysics of deep convective clouds, Q. J. R. Meteorol. Soc., 131, 125.
  • Klemp, J. B., and R. B. Wilhelmson (1978), The simulation of three-dimensional convective storm dynamics, J. Atmos. Sci., 35, 10701096.
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich (2005), Aerosol invigoration and restructuring of Atlantic convective clouds, Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.
  • Lang, S., W.-K. Tao, J. Simpson, and B. Ferrier (2003), Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods, J. Appl. Meteorol., 42, 505527.
  • LeMone, M. A., D. P. Jorgensen, and B. F. Smull (1994), The impact of two convective systems of sea surface stresses in COARE, paper presented at Sixth Conference on Mesoscale Processes, Am. Meteorol. Soc., Portland, Oreg.
  • Lin, J. C., T. Matsui, R. A. Pielke Sr., and C. Kummerow (2006), Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study, J. Geophys. Res., 111, D19204, doi:10.1029/2005JD006884.
  • Lynn, B. H., A. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert (2005a), Spectral (bin) microphysics coupled with a mesoscale model (MM5) part I: Model description and first results, Mon. Weather Rev., 133, 4458.
  • Lynn, B. H., A. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert (2005b), Spectral (bin) microphysics coupled with a mesoscale model (MM5) part II: Simulation of a CaPE rain event with a squall line, Mon. Weather Rev., 133, 5971.
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton (1992), New primary ice-nucleation parameterization in an explicit cloud model, J. Appl. Meteorol., 31, 708721.
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton (1997), New RAMS cloud microphysics parameterization. part II: The two-moment scheme, Atmos. Res., 45, 339.
  • Mossop, S. C., and J. Hallett (1974), Ice crystal concentration in cumulus clouds: Influence of the drop spectrum, Science, 186, 632634.
  • National Research Council (2005), Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties, Natl. Acad., Washington, D. C.
  • Orville, R. E., R. Zhang, J. N. Gammon, D. Collins, B. Ely, and S. Steiger (2001), Enhancement of cloud-to-ground lightening over Houston, Texas, Geophys. Res. Lett., 28, 25972600.
  • Phillips, V. T. J., T. W. Choularton, A. M. Blyth, and J. Latham (2002), The influence of aerosol concentrations on the glaciation and precipitation of a cumulus cloud, Q. J. R. Meteorol. Soc., 128, 951971.
  • Pinsky, M., A. P. Khain, and M. Shapiro (2000), Stochastic effect on cloud droplet hydrodynamic interaction in a turbulent flow, Atmos. Res., 53, 131169.
  • Pinsky, M., A. P. Khain, and M. Shapiro (2001), Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution, J. Atmos. Sci., 58, 742764.
  • Pruppacher, H. R. and J. D. Klett (1997), Microphysics of Clouds and Precipitation, 2nd ed., 914 pp., Oxford Univ. Press, New York.
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld (2001), Aerosols, climate, and the hydrological cycle, Science, 294, 21192124.
  • Redelsperger, J.-L., et al. (2000), A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. part I: Cloud-resolving models, Q. J. R. Meteorol. Soc., 126, 823863.
  • Reisin, T. G., Y. Yin, Z. Levin, and S. Tzivion (1998), Development of giant drops and high reflectivity cores in Hawaiian clouds: Numerical simulation using a kinematic model with detailed microphysics, Atmos. Res., 45, 275297.
  • Ridley, B., et al. (2004), Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere, J. Geophys. Res., 109, D17305, doi:10.1029/2004JD004769.
  • Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophys. Res. Lett., 26, 31053108.
  • Rosenfeld, D. (2000), Suppression of rain and snow by urban and industrial air pollution, Science, 287, 17931796.
  • Rosenfeld, D., and I. Lensky (1998), Satellite-based insights into precipitation formation processes in continental and maritime convective clouds, Bull. Am. Meteorol. Soc., 79, 24572476.
  • Rosenfeld, D. and C. W. Ulbrich (2003), Cloud microphysical properties, processes, and rainfall estimation opportunities, in Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, edited by Roger M. Wakimoto, and Ramesh Srivastava, Meteorol. Monogr., 52, 237258.
  • Rosenfeld, D., and W. L. Woodley (2000), Convective clouds with sustained highly supercooled liquid water down to −37°C, Nature, 405, 440442.
  • Rosenfeld, D., Y. Rudich, and R. Lahav (2001), Desert dust suppressing: A possible desertification feedback loop, Proc. Natl. Acad. Sci. U.S.A., 98, 59755980.
  • Rutledge, S. A., R. A. Houze Jr., and M. I. Biggerstaff (1988), The Oklahoma-Kansas mesoscale convective system of 10–11 June 1985: Precipitation structure and single-Doppler radar analysis, Mon. Weather Rev., 116, 14091430.
  • Saleeby, S. M., and W. R. Cotton (2004), A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State Univ. Regional Atmospheric Modeling System (RAMS). part I: Module descriptions and supercell test simulations, J. Appl. Meteorol., 43, 182195.
  • Seifert, A., A. Khain, U. Blahak, and K. D. Beheng (2005), Possible effects of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model, J. Atmos. Sci., 62, 19171931.
  • Shepherd, J. M. (2005), A review of current investigations of urban-induced rainfall and recommendations for the future, Earth Interactions, 9, 127.
  • Smolarkiewicz, P. K., and W. W. Grabowski (1990), The multidimensional positive advection transport algorithm: Nonoscillatory option, J. Comput. Phys., 86, 355375.
  • Soong, S.-T., and Y. Ogura (1980), Response of trade wind cumuli to large-scale processes, J. Atmos. Sci., 37, 20352050.
  • Soong, S.-T., and W.-K. Tao (1980), Response of deep tropical clouds to mesoscale processes, J. Atmos. Sci., 37, 20162034.
  • Squires, P. and T. Twomey (1960), The relation between cloud drop numbers and the spectrum of cloud nuclei, in Physics of Precipitation, Geophys. Monogr. Ser., vol. 5, edited by H. Weickmann, pp. 211219, AGU, Washington, D. C.
  • Sui, C.-S., X. Li, and M.-J. Yang (2007), On the definition of precipitation efficiency, J. Atmos. Sci., in press.
  • Tao, W.-K., and J. Simpson (1993), Goddard cumulus ensemble model. part I: Model description, Terr. Atmos. Oceanic Sci., 4, 3572.
  • Tao, W.-K., J. Simpson, C.-H. Sui, B. Ferrier, S. Lang, J. Scala, M.-D. Chou, and K. Pickering (1993), Heating, moisture and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation, J. Atmos. Sci., 50, 673690.
  • Tao, W.-K., J. Scala, and J. Simpson (1995), The effects of melting processes on the development of a tropical and a midlatitude squall line, J. Atmos. Sci., 52, 19341948.
  • Tao, W.-K., S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou (1996), Mechanisms of cloud-radiation interaction in the tropics and midlatitudes, J. Atmos. Sci., 53, 26242651.
  • Tao, W.-K., et al. (2003a), Microphysics, radiation and surface processes in the Goddard cumulus ensemble (GCE) model, Meteorol. Atmos. Phys., 82, 97137.
  • Tao, W.-K., D. Starr, A. Hou, P. Newman, and Y. Sud (2003b), A cumulus parameterization workshop, Bull. Am. Meteorol. Soc, 84, 10551062.
  • Teller, A., and Z. Levin (2006), The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model, Atmos. Chem. Phys., 6, 6780.
  • Trier, S. B., W. C. Skamarock, M. A. LeMone, D. B. Parsons, and D. P. Jorgensen (1996), Structure and evolution of the 22 February 1993 TOGA COARE squall line: Numerical simulations, J. Atmos. Sci., 53, 28612886.
  • Trier, S. B., W. C. Skamarock, and M. A. LeMone (1997), Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation, J. Atmos. Sci., 54, 386407.
  • Twomey, S. A. (1977), The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 11491152.
  • Twomey, S., and T. A. Wojciechowski (1969), Observations of the geographical variation of cloud nuclei, J. Atmos. Sci., 26, 684688.
  • Twomey, S. A., M. Piepgrass, and T. L. Wolfe (1984), An assessment of the impact of pollution on global cloud albedo, Tellus, Ser. B, 36, 356366.
  • Vali, G. (1994), Freezing rate due to heterogeneous nucleation, J. Atmos. Sci., 51, 18431856.
  • van den Heever, S. C., and W. R. Cotton (2007), Urban aerosol impacts on downwind convective storms, J. Appl. Meteorol. Clim., 46, 828850.
  • van den Heever, S. C., G. G. Carrió, W. R. Cotton, P. J. DeMott, and A. J. Prenni (2006), Impact of nucleating aerosol on Florida storms. part 1: Mesoscale simulations, J. Atmos. Sci., 63, 17521775.
  • Wang, C. (2005), A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics, J. Geophys. Res., 110, D21211, doi:10.1029/2004JD005720.
  • Wang, Y., W.-K. Tao, and J. Simpson (1996), The impact of a surface layer on a TOGA COARE cloud system development, Mon. Weather Rev., 124, 27532763.
  • Wang, Y., W.-K. Tao, J. Simpson, and S. Lang (2003), The sensitivity of tropical squall lines to surface fluxes: Three-dimensional cloud resolving model simulations, Q. J. R. Meteorol. Soc., 129, 9871006.
  • Warner, J. (1968), A reduction in rainfall associated with smoke from sugar-cane fires: An inadvertent weather modification? J. Appl. Meteorol., 7, 247251.
  • Warner, J., and S. Twomey (1967), The production of cloud nuclei by cane fires and the effects on cloud droplet concentration, J. Atmos. Sci., 24, 704706.
  • Williams, E., et al. (2002), Contrasting convective regimes over the Amazon: Implications for cloud electrification, J. Geophys. Res., 107(D20), 8082, doi:10.1029/2001JD000380.
  • Yang, M.-J., and R. A. Houze Jr. (1995), Multicell squall-line structure as a manifestation of vertically trapped gravity waves, Mon. Weather Rev., 123, 641661.