SEARCH

SEARCH BY CITATION

References

  • Alfarra, M. R., et al. (2004), Characterization of urban and rural organic particulate in the Lower Fraser Valley suing two aerodyne aerosol mass spectrometers, Atmos. Environ., 38, 57455758.
  • Aptowicz, K. B., R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang (2006), Optical Scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies, J. Geophys. Res., 111, D12212, doi:10.1029/2005JD006774.
  • Bae, M.-S., J. J. Schauer, and J. R. Turner (2006), Estimation of the monthly average ratios of organic mass to organic carbon for fine particulate matter at an urban site, Aerosol Sci. Technol., 40, 11231139.
  • Bauer, H., A. Kasper-Giebl, F. Zibuschka, R. Hitzenberger, G. F. Kraus, and H. Puxbaum (2002a), Determination of the carbon content of air-borne fungal spores, Anal. Chem., 74, 9195.
  • Bauer, H., A. Kasper-Giebl, M. Loflund, H. Giebl, R. Hitzenberger, F. Zibuschka, and H. Puxbaum (2002b), The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols, Atmos. Res., 64, 109119.
  • Bauer, H., M. Fuerhacker, F. Zibuschka, H. Schmid, and H. Puxbaum (2002c), Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants, Water Res., 36, 39653970.
  • Cao, G., X. Zhang, and F. Zheng (2006), Inventory of black carbon and organic carbon emissions from China, Atmos. Environ., 40, 65166527.
  • Carranza, J. E., and D. W. Hahn (2002), Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy, Anal. Chem., 74, 54505454.
  • Cavalli, F., M. C. Facchini, S. Decesari, M. Mircea, L. Emblico, and S. Fuzzi (2004), Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic, J. Geophys. Res., 109, D24215, doi:10.1029/2004JD005137.
  • Dasch, J. M., and S. H. Cadle (1989), Atmospheric carbon particles in the Detroit urban area: Wintertime sources and sinks, Aerosol Sci. Technol., 10, 236248.
  • Davitt, K., et al. (2006), Spectroscopic sorting of aerosols by a compact sensor employing UV LEDs, Aerosol Sci. Technol., 40, 10471051.
  • Decesari, S., M. C. Facchini, E. Matta, M. Mircea, S. Fuzzi, A. R. Chughtai, and D. M. Smith (2002), Water soluble organic compounds formed by oxidation of soot, Atmos. Environ., 36, 18271832.
  • De Souza Sierra, M. M., M. Giovanela, and E. J. Soriano-Sierra (2000), Fluorescence properties of well-characterized sedimentary estuarine humic compounds and surrounding pore waters, Environ. Technol., 21, 979988.
  • Duck, T. J., et al. (2007), Transport of forest fire emissions from Alaska and the Yukon Territory to Nova Scotia during summer 2004, J. Geophys. Res., 112, D10S44, doi:10.1029/2006JD007716.
  • Dudavera, N., E. Pichersky, and J. Gershenzon (2004), Biochemistry of plant volatiles, Plant Physiol., 135, 18931902.
  • Dzepina, K., J. Arey, L. C. Marr, D. R. Worsnop, D. Salcedo, Q. Zhang, T. B. Onasch, L. T. Molina, M. J. Molina, and J. L. Jimenez (2007), Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer, Int. J. Mass Spectrom., 263, 152170.
  • Eversole, J. D., J. J. Hardgrove, W. K. Cary Jr., D. P. Choulas, and M. Seaver (1999), Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results, Field Anal. Chem. Technol., 3, 249259.
  • Eversole, J. D., W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo (2001), Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results, Field Anal. Chem. Technol., 5, 205212.
  • Fraser, M. P., Z. W. Yue, R. J. Tropp, S. D. Kohl, and J. C. Chow (2002), Molecular composition of organic fine particulate matter in Houston, TX, Atmos. Environ., 36, 57515758.
  • Gelencsér, A., A. Hoffer, Z. Krivácsy, G. Kiss, A. Molnár, and E. Mészáros (2002), On the possible origin of humic matter in fine continental aerosol, J. Geophys. Res., 107(D12), 4137, doi:10.1029/2001JD001299.
  • Goldberg, M. C., and E. R. Weiner (1994), Fluorescence measurements of the volume, shape, and fluorophore composition of fulvic acid from the Suwannee River, in Humic Substances in the Suwannee River, Georgia: Interactions, Properties, and Proposed Structure, edited by R. C. Averett et al., U.S. Geol. Surv. Water Supply Pap., 2373, 99113.
  • Haagen-Smit, A. J. (1952), Chemistry and physiology of Los Angeles smog, Ind. Eng. Chem., 44, 13421346.
  • Hahn, D. W., and M. M. Lunden (2000), Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy, Aerosol Sci. Technol., 33, 3048.
  • Hairston, P. P., J. Ho, and F. R. Quant (1997), Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence, Aerosol Sci. Technol., 28, 471482.
  • Havers, N., P. Burba, J. Lambert, and D. Klockkow (1998), Spectroscopic characterization of humic-like substances in airborne particulate matter, J. Atmos. Chem., 29, 4554.
  • Hensel, A., and K. Petzoldt (1995), Biological and biochemical analysis of bacteria and viruses, in Bioaerosols Handbook, edited by C. S. Cox, and C. M. Wathes, pp. 335360, CRC Press, Boca Raton, Fla.
  • Herckes, P., M. P. Hannigan, L. Trenary, T. Lee, and J. L. Collett (2002), Organic compounds in radiation fogs in Davis, California, Atmos. Res., 64, 99108.
  • Hettinger, B., V. Hohreiter, M. Swingle, and D. W. Hahn (2005), Laser-induced breakdown spectroscopy for ambient air particulate monitoring: Correlation of total and speciated aerosol particle counts, Appl. Spectrosc., 60, 237245.
  • Hill, S. C., R. G. Pinnick, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather (1999), Real-time measurement of fluorescence spectra from single airborne biological particles, Field Anal. Chem. Technol., 3, 221239.
  • Hill, S. C., R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang (2001), Fluorescence from air-borne microparticles: Dependence on size, concentration of fluorophores, and illumination intensity, Appl. Opt., 40, 30053013.
  • Hindson, B. J., et al. (2005), Autonomous detection of aerosolized biological agents by multiplexed immunoassay with polymerase chain reaction confirmation, Anal. Chem., 77, 284289.
  • Hitzenberger, R., A. Berner, H. Giebl, R. Kromp, S. M. Larson, A. Rouc, A. Koch, S. Marischka, and H. Puxbaum (1999), Contribution of carbonaceous material to cloud condensation nuclei concentrations in European background (Mt. Sonnblick) and urban (Vienna) aerosols, Atmos. Environ., 33, 26472659.
  • Ho, J. (2002), Review: Future of biological aerosol detection, Anal. Chim. Acta, 457, 125148.
  • Holler, R., S. Tohno, M. Kasahara, and R. Hitzenberger (2002), Long-term characterization of carbonaceous aerosol in Uji, Japan, Atmos. Environ., 36, 12671275.
  • Huang, X.-F., J. Z. Yu, L.-Y. He, and Z. Yuan (2006), Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms, J. Geophys. Res., 111, D22212, doi:10.1029/2006JD007408.
  • Huntzicker, J. J., E. K. Heyerdahl, S. R. McDow, J. A. Rau, W. H. Griest, and C. S. MacDougall (1986), Combustion as the principal source of carbonaceous aerosol in the Ohio river valley, J. Air Pollut. Control Assoc., 36, 705709.
  • Hybl, J. D., S. M. Tysk, S. R. Berry, and M. P. Jordan (2006), Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection, Appl. Opt., 45, 88068814.
  • Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolf, and D. R. Worsnop (2000), Development of an aerosol mass spectrometer for size and composition analysis of submicron particles, Aerosol Sci. Technol., 33, 4970.
  • Jones, A. M., and R. M. Harrison (2004), The effects of meteorological factors on atmospheric bioaerosol concentrations—A review, Sci. Total Environ., 326, 151180.
  • Kanakidou, M., et al. (2005), Organic aerosol and global climate modeling: A review, Atmos. Chem. Phys., 5, 10531123.
  • Kane, D. B., and M. V. Johnston (2000), Size and composition biases on the detection of individual ultrafine particles by aerosol mass spectrometry, Environ. Sci. Technol., 34, 48874893.
  • Kaye, P. H., J. E. Barton, E. Hirst, and J. M. Clark (2000), Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles, Appl. Opt., 39, 37383745.
  • Kiss, G., B. Varga, I. Galambos, and I. Ganszky (2002), Characterization of water-soluble organic matter isolated from atmospheric fine aerosol, J. Geophys. Res., 107(D21), 8339, doi:10.1029/2001JD000603.
  • Klapper, L., D. M. McNight, J. R. Fulton, E. L. Blunt-Harris, K. P. Nevin, D. R. Lovley, and P. G. Hatcher (2002), Fulvic acid oxidation state detection using fluorescence spectroscopy, Environ. Sci. Technol., 36, 31703175.
  • Krivacsy, Z., et al. (2000), Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis, Atmos. Environ., 34, 42734281.
  • Krivacsy, Z., et al. (2001), Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch, J. Atmos. Chem., 39, 245.
  • Lakowicz, J. R. (1983), Principles of Fluorescence Spectroscopy, pp. 347356, Plenum, New York.
  • Larson, S. M., G. R. Cass, and H. A. Gray, (1989), Atmospheric carbon particles and the Los Angeles visibility problem, Aerosol Sci. Technol., 10, 118130.
  • Lee, S.-H., D. M. Murphy, D. S. Thomson, and A. M. Middlebrook (2002), Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta Supersite Project: Focus on organic/sulfate, lead, soot, and mineral particles, J. Geophys. Res., 107(D1), 4003, doi:10.1029/2000JD000011.
  • Lighthart, B. (1997), The ecology of bacteria in the alfresco atmosphere, FEMS Microbiol. Ecol., 23, 263274.
  • Lighthart, B., and A. J. Mohr (Eds.) (1994), Atmospheric Microbial Aerosols, CRC Press, Boca Raton, Fla.
  • Lighthart, B., and Y. Tong (1998), Measurements of total and culturable bacteria in the alfresco atmosphere using a wet-cyclone sampler, Aerobiologia, 14, 325332.
  • Lithgow, G. A., A. L. Robinson, and S. G. Buckley (2004), Ambient measurements of metal-containing PM2.5 in an urban environment using laser-induced breakdown spectroscopy, Atmos. Environ., 38, 33193328.
  • Mazurek, M. A., and B. R. T. Simoneit (1997), Higher molecular weight terpenoids as indicators of organic emissions from terrestrial vegetation, in MolecularMarkers in Environmental Geochemistry, ACS Symp. Ser., vol. 671, 92108, Am. Chem. Soc., Washington, D. C.
  • McJimpsey, E. L., P. T. Steele, K. R. Coffee, D. P. Fergenson, V. J. Riot, B. W. Woods, E. E. Gard, M. Frank, H. J. Tobias, and C. Lebrilla (2006), Detection of biological particles in ambient air using bioaerosol mass spectrometry, in Chemical and Biological Sensing VII, edited by P. J. Gardner, and A. W. Fountain III, Proc. SPIE Int. Soc. Opt. Eng., 6218, 62180B.
  • Merola, S. S., G. Gambi, C. Allouis, F. Beretta, A. Borghese, and A. D'Alessio (2001), Differential Analysis of exhausts emitted by engines and stationary burners, by means of U.V.-visible extinction and fluorescence spectroscopy, Chemosphere, 42, 827834.
  • Middlebrook, A. M., et al. (2003), A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project, J. Geophys. Res., 108(D7), 8424, doi:10.1029/2001JD000660.
  • Mitch, J. P. (1995), Particle size analyzers: practical procedures and laboratory techniques, in Bioaerosols Handbook, edited by C. S. Cox, and C. M. Wathes, pp. 214221, CRC Press, Boca Raton, Fla.
  • Murphy, D. M., A. M. Middlebrook, and M. Warshawsky (2003), Cluster analysis of data from the particle analysis by laser mass spectrometry (PALMS) instrument, Aerosol Sci. Technol., 37, 382391.
  • Noble, C. A., and K. A. Prather (2000), Real-time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols, Mass Spectrom. Rev., 19, 248274.
  • Novakov, T., and J. E. Penner (1993), Large contribution of organic aerosols to cloud condensation nuclei concentrations, Nature, 365, 823826.
  • Olmstead, J. A., and D. G. Gray (1997), Fluorescence spectroscopy of cellulose, lignin and mechanical pulps: A review, J. Pulp Pap. Sci., 23, J571J581.
  • Oppo, C., S. Bellandi, N. Degli Innocenti, A. M. Stortini, G. Loglio, E. Schiavuta, and R. Cini (1999), Surfactant components of marine organic matter as agents for biogeochemical fractionation and pollutant transport via marine aerosols, Mar. Chem., 63, 235253.
  • Ouatmane, A., V. D'Orazio, M. Hafidi, and N. Senesi (2002), Chemical and physicochemical characterization of humic acid-like materials from composts, Compost Sci. Land Util., 10, 3946.
  • Pan, Y. L., S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger (1999), Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351-or 266-nm ultraviolet laser, Opt. Lett., 24, 116118.
  • Pan, Y. L., P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J. P. Wolf (2001), High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector, Rev. Sci. Instrum., 72, 18311836.
  • Pan, Y. L., J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang (2003a), Single-particle fluorescence spectrometer for ambient aerosols, Aerosol Sci. Technol., 37, 628639.
  • Pan, Y.-L., V. Boutou, R. K. Chang, I. Ozden, K. Davitt, and A. V. Nurmiko (2003b), Application of light-emitting diodes for aerosol fluorescence detection, Opt. Lett., 28, 17071709.
  • Pan, Y. L., V. Boutou, J. Bottiger, S. S. Zhang, J.-P. Wolf, and R. K. Chang (2004), A puff of air sorts bioaerosols for pathogen identification, Aerosol Sci. Technol., 38, 598602.
  • Penner, J. E., and T. Novakov (1996), Carbonaceous particles in the atmosphere: A historical perspective to the fifth International Conference on Carbonaceous Particles in the Atmosphere, J. Geophys. Res., 101, 19,37319,378.
  • Pinnick, R. G., P. Chylek, M. Jarzembski, E. Creegan, V. Srivastava, G. Fernandez, J. D. Pendleton, and A. Biswas (1988), Aerosol-induced laser breakdown thresholds: Wavelength dependence, Appl. Opt., 27, 987996.
  • Pinnick, R. G., S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno (1995), Fluorescence particle counter for detecting airborne bacteria and other biological particles, Aerosol Sci. Technol., 23, 653664.
  • Pinnick, R. G., S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang (1998), Aerosol fluorescence spectrum analyzer for rapid measurement of single micrometer-sized airborne particles, Aerosol Sci. Technol., 28, 95104.
  • Pinnick, R. G., S. C. Hill, Y.-L. Pan, and R. K. Chang (2004), Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: Measurement and classification of single particles containing organic carbon, Atmos. Environ., 38, 16571672.
  • Prather, K. A., T. Nordmeyer, and K. Salt (1994), Real-time characterization of individual aerosol-particles using time-of-flight mass-spectrometry, Anal. Chem., 66, 14031407.
  • Qin, X., and K. A. Prather (2006), Impact of biomass emissions on particle chemistry during the California Regional Particulate Air Quality Study, Int. J. Mass Spectrom., 258, 142150.
  • Radziemski, L., T. Loree, D. Cremers, and N. Hoffman (1983), Time-resolved laser-induced breakdown spectrometry of aerosols, Anal. Chem., 55, 12461252.
  • Reyes, F. L., T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez (1999), Bio-aerosol fluorescence sensor, Field Anal. Chem. Technol., 3, 240248.
  • Robinson, A. L., N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis (2007), Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science, 315, 12591262.
  • Rogge, W. F., L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit (1993a), Sources of fine organic aerosol: Particulate abrasion products from leaf surfaces of urban plants, Environ. Sci. Technol., 27, 27002710.
  • Rogge, W. F., M. A. Mazurek, L. M. Hildemann, and G. R. Cass (1993b), Quantification of urban organic aerosols at a molecular level: Identification of abundance and seasonal variation, Atmos. Environ., Part A, 27, 13091330.
  • Rogge, W. G., P. M. Medeiros, and B. R. T. Simoneit (2006), Organic marker compounds for surface soil and fugitive dust from open lot dairies and cattle feedlots, Atmos. Environ., 40, 2749.
  • Samburova, V., R. Zenobi, and M. Kalberer (2005), Characterization of high molecular weight compounds in urban atmospheric particles, Atmos. Chem. Phys., 5, 21632170.
  • Saxena, P., and L. Hildeman (1996), Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57109.
  • Seaver, M., J. D. Eversole, J. J. Hardgrove, W. K. Cary Jr., and D. C. Roselle (1999), Size and fluorescence measurements for field detection of biological aerosols, Aerosol Sci. Technol., 30, 174185.
  • Seinfeld, J. H., and S. N. Pandis (2006), Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, 2nd ed., chap. 14, pp. 628690, John Wiley, Hoboken, N. J.
  • Shaffer, B. T., and B. Lighthart (1997), Survey of culturable airborne bacteria at four diverse locations in Oregon: Urban, rural, forest, and coastal, Microbial Ecol., 34, 167177.
  • Shah, J. J., R. L. Johnson, E. K. Heyerdahl, and J. J. Huntzicker (1986), Carbonaceous aerosol at urban and rural sites in the United States, J. Air Pollut. Control Assoc., 36, 254257.
  • Simoneit, B. R. T., J. J. Schauer, C. G. Nolte, D. R. Oros, V. O. Elias, M. P. Fraser, W. F. Rogge, and G. R. Cass (1999), Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33, 173182.
  • Sivaprakasam, V., A. L. Huston, C. Scotto, and J. D. Eversole (2004), Multiple UV wavelength excitation and fluorescence of bioaerosols, Opt. Express, 12, 44574466.
  • Srivastava, A., et al. (2005), Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry, Anal. Chem., 77, 33153323.
  • Sullivan, R. D., and K. A. Prather (2005), Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation, Anal. Chem., 77, 38613885.
  • Tong, Y., and B. Lighthart (1999), Diurnal distribution of total and culturable atmospheric bacteria at a rural site, Aerosol Sci. Technol., 30, 246254.
  • VanCuren, R. A., and T. A. Cahill (2002), Asian aerosols in North America: Frequency and concentration of fine dust, J. Geophys. Res., 107(D24), 4804, doi:10.1029/2002JD002204.
  • Went, F. W. (1960), Organic matter in the atmosphere and its possible relation to petroleum formation, Proc. Natl. Acad. Sci., 46, 212220.
  • White, W. H., and E. S. Macias (1989), Carbonaceous particles and regional haze in the western United States, Aerosol Sci. Technol., 10, 111117.
  • Williams, B. J., A. H. Goldstein, N. M. Kreisberg, and S. V. Hering (2006), An in-situ instrument for speciated organic composition of atmospheric aerosols: Thermal desorption aerosol GC/MS-FID (TAG), Aerosol Sci. Technol., 40, 627638.
  • Zappoli, S., et al. (1999), Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ., 33, 27332743.
  • Zhang, Q., C. O. Stanier, M. R. Canagaratna, J. T. Jayne, D. R. Worshop, S. N. Pandis, and J. L. Jimenez (2004), Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectroscopy, Environ. Sci. Technol., 38, 47494809.