SEARCH

SEARCH BY CITATION

References

  • Aber, J. D., C. L. Goodale, and S. V. Ollinger (2003), Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience, 53, 375389.
  • Ambus, P., and G. P. Robertson (2006), The effect of increased N deposition on nitrous oxide, methane and carbon dioxide fluxes from unmanaged forest and grassland communities in Michigan, Biogeochemistry, 79, 315337, doi:10.1007/s10533-005-5313-x.
  • Bodelier, P. L. E., and H. J. Laanbroek (2004), Nitrogen as a regulatory factor of methane oxidation in soils and sediments, FEMS Microbiol. Ecol., 47, 265277.
  • Borken, W., Y. J. Xu, and F. Beese (2003), Conversion of hardwood forests to spruce and pine plantations strongly reduced soil methane sink in Germany, Global Change Biol., 9, 956966.
  • Borken, W., F. Beese, R. Brumme, and N. Lamersdorf (2002), Long-term reduction in nitrogen and proton inputs did not affect atmospheric methane uptake and nitrous oxide emission from a German spruce forest soil, Soil Biol. Biochem., 34, 18151819.
  • Bradford, M. A., P. Ineson, P. A. Wookey, and H. M. Lappin-Scott (2001a), The effects of acid nitrogen and acid sulphur deposition on CH4 oxidation in a forest soil: A laboratory study, Soil Biol. Biochem., 33, 16951702.
  • Bradford, M. A., P. A. Wookey, P. Ineson, and H. M. Lappin-Scott (2001b), Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil, Soil Biol. Biochem., 33, 93102.
  • Brown, S., M. T. Lenart, and J. M. Mo (1995), Structure and organic matter dynamics of a human-impacted pine forest in a MAB reserve of subtropical China, Biotropica, 27, 276289.
  • Brumme, R., and W. Borken (1999), Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem, Global Biogeochem. Cycles, 13, 493502.
  • Butterbach-Bahl, K., R. Gasche, C. Huber, K. Kreutzer, and H. Papen (1998), Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe, Atmos. Environ., 32, 559564.
  • Butterbach-Bahl, K., L. Breuer, and R. Gasche (2002), Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the North Eastern German Lowlands. 1. Fluxes of N2O, NO/NO2 and CH4 at forest sites with different N-deposition, For. Ecol. Manage., 167, 123134.
  • Castaldi, S., and A. Fierro (2005), Soil-atmosphere methane exchange in undisturbed and burned Mediterranean shrubland of southern Italy, Ecosystems, 8, 182190, doi:10.1007/s10021-004-0093-z.
  • Castro, M. S., W. T. Peterjohn, J. M. Melillo, and P. A. Steudler (1994), Effects of nitrogen on the fluxes of N2O, CH4 and CO2 from soils in a Florida slash pine plantation, Can. J. For. Res., 24, 913.
  • Castro, M. S., P. A. Steudler, and R. D. Bowden (1995), Factors controlling atmospheric methane consumption by temperate forest soils, Global Biogeochem. Cycles, 9, 110.
  • Castro, M. S., H. L. Gholz, K. L. Clark, and P. A. Steudler (2000), Effects of forest harvesting on soil methane fluxes in Florida slash pine plantations, Can. J. For. Res., 30, 15341542.
  • Chen, X. Y., and J. Mulder (2007), Indicators for nitrogen status and leaching in subtropical forest ecosystems, South China, Biogeochemistry, 82, 165180.
  • NDRCPRC, National Development and Reform Commission of People's Republic of China (2007), China's National Climate Change Programme (available from http://www.sdpc.gov.cn/xwfb/t20070604_139486.htm), Beijing (in Chinese).
  • Crutzen, P. J. (1991), Methane's sinks and sources, Nature, 350, 380381.
  • Davidson, E., F. Ishida, and D. Nepstad (2004), Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest, Global Change Biol., 10(5), 718730.
  • De Visscher, A., P. Boeckx, and O. Van Cleemput (2007), Artificial methane sinks, in Greenhouse Gas Sinks, edited by D. S. Reay et al., pp. 184200, CABI, New York.
  • Fang, Y. T., W. X. Zhu, J. M. Mo, G. Y. Zhou, and P. Gundersen (2006), Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, South China, J. Environ. Sci., 18, 752759.
  • Fang, H., J. M. Mo, S. L. Peng, Z. A. Li, and H. Wang (2007), Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China, Plant Soil, 297, 233242, doi:10.1007/s11104-007-9339-9.
  • Galloway, J. N., E. Cowling, and E. Kessler (2002), Reactive nitrogen, Ambio, 31, 59, 2002.
  • Galloway, J. N., et al. (2004), Nitrogen Cycles: Past, present, and future, Biogeochemistry, 70, 153226.
  • Gulledge, J., and J. P. Schimel (1998), Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanisms of NH4+ inhibition, Appl. Environ. Microbiol., 64, 42914298.
  • Gulledge, J., A. P. Doyle, and J. P. Schimel (1997), Different NH4+ inhibition patterns of soil CH4 consumption: A result of distinct CH4-oxidizer populations across sites? Soil Biol. Biochem., 29, 13, 1997.
  • Hall, S. J., and P. A. Matson (2003), Nutrient status of tropical rain forests influences soil N dynamics after N additions, Ecol. Monogr., 73, 107129.
  • Heyer, J., and R. Suckow (1985), Ökologische untersuchungen der methanoxidation in einem sauren moorsee, Limnologica, 16, 247266.
  • Holdridge, L. R. (1967), Life Zone Ecology, Tropical Science Center, San Jose, Costa Rica.
  • Holland, E. A., F. J. Dentener, B. H. Braswell, and J. M. Sulzman (1999), Contemporary and pre-industrial global reactive nitrogen budgets, Biogeochemistry, 46, 749.
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. Linden, and D. Xiaosu (2001), Climate change 2001, the scientific basis, in Contribution of Working Group to the Third Assessment Report of the Intergovernmental Panel on Climatic Change (IPCC), p. 944, Cambridge Univ. Press.
  • Huang, Z. F., and Z. G. Fan (1982), The climate of Dinghushan (in Chinese), in Tropical and Subtropical Forest Ecosystem, vol. 1, pp. 1123, Science Press, Beijing.
  • Huang, Z. L., M. M. Ding, Z. P. Zhang, and W. M. Yi (1994), The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan, Acta Phytoecol. Sin., 18, 194199 (in Chinese).
  • Hütsch, B. W. (1998), Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH, Biol. Fertil. Soils, 28, 2735.
  • IAEA (1992), Manual on measurements of methane and nitrous oxide emissions from agriculture, International Atomic Energy Agency, Vienna, Austria.
  • IPCC (Intergovernmental Panel on Climate Change) (2002), Special Report on Emission Scenarios, Cambridge Univ. Press, U.K.
  • Ishizuka, S., T. Sakata, and K. Ishizuka (2000), Methane oxidation in Japanese forest soils, Soil Biol. Biochem., 32, 769777.
  • Ishizuka, S., A. Iswandi, Y. Nakajima, L. Yonemura, S. Sudo, H. Tsuruta, and D. Muriyarso (2005), Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia, Nutr. Cycling Agroecosyst., 71(1), 5562.
  • Jang, I., S. Lee, J. H. Hong, and H. Kang (2006), Methane oxidation rates in forest soils and their controlling variables: A review and a case study in Korea, Ecol. Res., 21, 849854, doi:10.1007/s11284-006-0041-9.
  • King, G. M., and S. Schnell (1994), Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations, Appl. Environ. Microbiol., 60, 35083513.
  • Le Mer, J., and P. Roger (2001), Production, oxidation, emission and consumption of methane by soils: A review, Eur. J. Soil, 37, 2550.
  • Liu, G. H., B. J. Fu, L. D. Chen, and X. D. Guo (2000), Characteristics and distributions of degraded ecological types in China, Acta Ecol. Sin., 20, 1319 (in Chinese).
  • Lu, X. K., J. M. Mo, P. Gundersern, W. X. Zhu, G. Y. Zhou, D. J. Li, and X. Zhang (2008), Effects of simulated N deposition on soil exchangeable cations in three forest land-use types in subtropical China, Pedosphere, in press.
  • Maljanen, M., A. Liikanen, J. Silvola, and P. J. Martikainen (2003), Methane fluxes on agricultural and forested boreal organic soils, Soil Use Manage., 19, 7379.
  • Matson, P. A., K. A. Lohse, and S. J. Hall (2002), The globalization of nitrogen deposition: Consequences for terrestrial ecosystems, Ambio, 31, 113119.
  • Menyailo, O. V., and B. A. Hungate (2002), Interactive effects of tree species and soil moisture on methane consumption, Soil Biol. Biochem., 35, 625628.
  • Mo, J. M., S. Brown, M. Lenart, and G. H. Kong (1995), Nutrient dynamics of a human-impacted pine forest in a MAB Reserve of subtropical China, Biotropica, 27, 290304.
  • Mo, J. M., S. Brown, and S. L. Peng (2003), Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China, For. Ecol. Manage., 175, 573583.
  • Mo, J. M., S. L. Peng, S. Brown, G. H. Kong, and Y. T. Fang (2004), Nutrient dynamics in response to harvesting practices in a pine forest of subtropical China, Acta Phytoecol. Sin., 28, 810822 (in Chinese).
  • Mo, J. M., S. Brown, and J. H. Xue (2006), Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China, Plant Soil, 282, 135151.
  • Mo, J. M., W. Zhang, W. X. Zhu, Y. T. Fang, D. J. Li, and P. Zhao (2007a), Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China, Plant Soil, 296, 125135, doi:10.1007/s11104-007-9303-8.
  • Mo, J. M., S. Brown, J. H. Xue, Y. T. Fang, Z. A. Li, D. J. Li, and S. F. Dong (2007b), Response of nutrient dynamics of decomposing pine (Pinus massoniana) needles to simulated N deposition in a disturbed and a rehabilitated forest in tropical China, Ecol. Res., 22, 649658, doi:10.1007/s11284-006-0317-0.
  • Mo, J. M., W. Zhang, W. X. Zhu, P. Gundersen, Y. T. Fang, D. J. Li, and H. Wang (2008), Nitrogen addition reduces soil respiration in a mature tropical forest in southern China, Global Change Biol., 14, 412430.
  • Mosier, A., D. Schimel, D. Valentine, K. Bronson, and W. Parton (1991), Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands, Nature, 350, 330332.
  • Nakano, T., G. Inoue, and M. Fukuda (2004), Methane consumption and soil respiration by a birch forest soil in West Siberia, Tellus, Ser. A and Ser. B, 56B, 223229.
  • Nanba, K., and G. King (2000), Response of atmospheric methane consumption by Maine forest soils to exogenous Aluminum salts, Appl. Environ. Microbiol., 66(9), 36743679.
  • Nesbit, S. P., and G. A. Breitenbeck (1992), A laboratory study of factors influencing methane uptake by soils, Agric. Ecosyst. Environ., 41, 3954.
  • NSBC (National Standard Bureau of China) (1987), Analytical Methods for Forest Soils (in Chinese), National Standard Bureau Press, Beijing.
  • Priemé, A., and S. Christensen (1997), Seasonal and spatial variation of methane oxidation in a Danish spruce forest, Soil Biol. Biochem., 29, 11651172.
  • Reay, D. S., and D. B. Nedwell (2004), Methane oxidation in temperate soils: Effects of inorganic N, Soil Biol. Biochem., 36, 20592065.
  • Ren, R., F. J. Mi, and N. B. Bai (2000), A chemometrics analysis on the data of precipitation chemistry of China, J. Beijing Polytechnic Univ., 26, 9095 (in Chinese).
  • Schlesinger, H. W. (1997), Biogeochemistry: An Analysis of Global Change, Academic Press, New York.
  • Schnell, S., and G. M. King (1994), Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils, Appl. Environ. Microbiol., 25, 14151421.
  • Sitaula, B. K., J. I. B. Sitaula, Å. Aakra, and L. R. Bakken (2001), Nitrification and methane oxidation in forest soil: Acid deposition, nitrogen input and plant effects, Water Air Soil Pollut., 130, 10611066.
  • Smith, K. A., et al. (2000), Oxidation of atmospheric methane is Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink, Global Change Biol., 6, 791803.
  • Steinkamp, R., K. Butterbach-Bahl, and H. Papen (2001), Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany, Soil Biol. Biochem., 33, 145153, doi:S0038-0717(00)00124-3.
  • Steudler, P. A., R. D. Bowden, J. M. Mellilo, and J. D. Aber (1989), Influence of nitrogen fertilization on methane uptake in temperate forest soils, Nature, 341, 314316.
  • Steudler, P. A., R. D. Jones, M. S. Castro, J. M. Melillo, and D. L. Lewis (1996), Microbial controls of methane oxidation in temperate forest and agricultural soils, in Microbiology of Atmospheric Trace Gases, NATO ASI Series, edited by J. C. Murrell, and D. P. Kelly, 139, 6984.
  • Tamai, N., C. Takenaka, S. Ishizuka, and T. Tezuka (2003), Methane flux and regulatory variables in soils of three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in central Japan, Soil Biol. Biochem., 35, 633641.
  • Tang, X. L., S. G. Liu, G. Y. Zhou, and D. Q. Zhang (2006), Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China, Global Change Biol., 12, 546560.
  • Ulrich, B. (1987), Stability, elasticity and resilience of terrestrial ecosystems with respect to matter balance, in Potentials and Limitations of Ecosystem Analysis, Ecol. Stud., vol. 61, edited by E. D. Schulze, and H. Zwolfer, pp. 1149, Springer-Verlag, Berlin, Heidelberg.
  • Wang, Z. P., and P. Ineson (2003), Methane oxidation in a temperate coniferous forest soil: Effects of inorganic N, Soil Biol. Biochem., 35, 427433.
  • Wang, Y. S., and Y. H. Wang (2003), Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem, Adv. Atmos. Sci., 20, 842844.
  • Wang, Z., D. He, S. Song, S. Chen, D. Chen, and M. Tu (1982), The vegetation of Dinghushan biosphere reserve, in Tropical and Subtropical Forest Ecosystem, vol. 1, pp. 77141, (in Chinese).
  • Werner, C., R. Kiese, and K. Butterbach-Bahl (2007), Soil-atmosphere exchange of N2O, CH4, and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya, J. Geophys. Res., 112, D03308, doi:10.1029/2006JD007388.
  • Whalen, S. C., and W. S. Reeburgh (2000), Effect of nitrogen fertilization on atmospheric methane oxidation in boreal forest soils, Chemosphere Global Change Sci., 2, 151155.
  • Whalen, S. C., W. S. Reeburgh, and V. A. Barber (1992), Oxidation of methane in boreal forest soils: A comparison of seven measures, Biogeochemistry, 16, 181211.
  • Willison, T. W., R. Cook, A. Müller, and D. S. Powlson (1996), CH4 oxidation in soils fertilized with organic and inorganic-N: Differential effects, Soil Biol. Biochem., 28, 135136.
  • Xu, X. K., and K. Inubushi (2004), Effects of N sources and methane concentrations on methane uptake potential of a typical coniferous forest and its adjacent orchard soil, Biol. Fertil. Soils, 40, 215221.
  • Zhou, G. Y., and J. H. Yan (2001), The influence of region atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems, Acta Ecol. Sin., 21, 20022012 (in Chinese).
  • Zhou, G. Y., S. G. Liu, Z. A. Li, D. Q. Zhang, X. L. Tang, C. Y. Zhou, J. H. Yan, and J. M. Mo (2006), Old-growth forests can accumulate carbon in soils, Science, 314, 1417.