SEARCH

SEARCH BY CITATION

Keywords:

  • particulate nitrate;
  • long-range transport;
  • chemical transformation;
  • East China Sea

Abstract

  1. Top of page
  2. Abstract
  3. 1. Introduction
  4. 2. Experimental Methods
  5. 3. Results
  6. 4. Discussion
  7. 5. Conclusion
  8. Acknowledgments
  9. References
  10. Supporting Information

[1] Ground-based measurement of total reactive nitrogen (NOy), NOy(g) (gas phase NOx + HNO3), and particulate NO3 was carried out at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan, from spring to winter in 2006. The concentrations of NOy, NOy(g), and particulate NO3 were simultaneously high in spring but low in summer. This difference was mainly caused by air mass history, which was strongly associated with the typical weather pattern observed in the east Asian region for each season. The chemical transformation process of particulate NO3 during transport was examined using the data measured at Qingdao, China, in spring 2006. As the transport time of air masses increased, particulate NO3 continuously shifted from fine mode to coarse mode. It was found that the chemical transformation of particulate NO3 was mainly associated with the transport time of air masses, the geographical position of CHAAMS, and the transition from NH4NO3 to gas phase HNO3. In air masses from Qingdao, China, the ratio of NOy concentration observed at CHAAMS to that at Qingdao was about 0.1, which was lower than that of SOy (SO2 + nss-SO42−). Sulfate was found in fine particles at CHAAMS in contrast to particulate NO3. As the lifetimes of NOy and SOy depend on the particle size, the difference in chemical transformation process during transport largely influences the abundance of transported NOy. The variations of NOy(g) and particulate NO3 were analyzed when dust plumes reached CHAAMS. The presence of dust causes the formation of particulate NO3 in coarse mode from NOy(g) and an increase of its fraction in NOy. The effect of volcanic activity on particulate NO3 concentration was also analyzed. It is suggested that particulate NO3 escaped to gas phase HNO3 through the uptake of abundant volcanic H2SO4 by aerosols.

1. Introduction

  1. Top of page
  2. Abstract
  3. 1. Introduction
  4. 2. Experimental Methods
  5. 3. Results
  6. 4. Discussion
  7. 5. Conclusion
  8. Acknowledgments
  9. References
  10. Supporting Information

[2] Total reactive nitrogen (NOy) in the troposphere is generally composed of NO, NO2, NO3, N2O5, HONO, HO2NO2, nitric acid (HNO3), peroxyacetyl nitrate (PAN), organic nitrate, and particulate nitrate (NO3). The evaluation of each species of NOy is important not only to determine the levels of ozone and hydroxyl radicals in the troposphere [Liu et al., 1987; Chameides et al., 1992], but also to assess the nitrogen cycle in the biosphere.

[3] Ammonium nitrate (NH4NO3) is formed by the reaction between ammonia (NH3) and HNO3. NH4NO3 is generally found in particles with a diameter (Dp) < 1 μm. NH4NO3 is a thermodynamically unstable species and strongly depends on temperature and relative humidity [Stelson and Seinfeld, 1982]. Particulate NO3 with Dp > 1 μm can be produced by absorption of HNO3 in soil dust or sea salt particles. The formation or deposition of particulate NO3 is important in evaluating NOy concentration. Therefore, the observation and evaluation of particulate NO3 are indispensable for considering the concentration of NOy.

[4] Energy consumption in east Asia has recently increased because of the region's rapid economic development, and the emission of air pollutants is increasing accordingly. The release of air pollutants influences human health, plant growth, climate change and air quality. East Asia's energy consumption has increased 5% annually over the past decade and is predicted to continue increasing at this rate for several more decades (U.S. Department of Energy, International Energy Outlook, 1997, available at http://www.eia.doe.gov/oiaf/ieo/ieoarchive.html). Combustion of fossil fuels is the main source of energy, with emissions of NOx predicted to increase nearly fivefold by 2050 [Van Aardenne et al., 1999].

[5] Air pollutants cross borders and influence neighboring countries. It is well known that dust is transported long distances over the Pacific Ocean and reaches North America. Wilkening et al. [2000] suggested that air pollutants are also transported across the Pacific Ocean, and affect the atmospheric environment in North America. In this regard, aircraft missions such as TRACE-P (Transport and Chemical Evolution over the Pacific) and ACE-Asia (Asian Pacific Regional Aerosol Characterization Experiment) reported the spatial distribution and characteristics of air pollutants in east Asia and the western Pacific Ocean in detail [Talbot et al., 2003; Maxwell-Meier et al., 2004; Miyazaki et al., 2005]. In addition, aircraft observations were carried out in 2002 in China, and detected high concentrations of NOx and SO2 at Shanghai and Qingdao [Hatakeyama et al., 2005].

[6] In spring, dust events often occur in east Asia. It is suggested that the transport of dust is related to that of air pollutants [Seinfeld et al., 2004]. Dust particles, through surface uptake of gases such as H2SO4 and HNO3, can form particulate sulfate (SO42−) and NO3 in the downstream marine atmosphere over Korea and Japan. Nishikawa et al. [1991] studied individual dust particles in arid regions of China and in the downstream region including Korea and Japan, and found that the weight fraction of SO42− was higher in the downstream region. The chemical transformation of dust during transport was also reported by Kim et al. [1998] and Ooki and Uematsu [2005]. The composition, size, and shape of aerosols become more complex after mixing with sea salt during transport [Zhang et al., 2006]. This transformation of aerosols potentially affects the global radiation balance, therefore it is important to understand how air pollutants are transformed during transport.

[7] In this study, ground-based measurement of nitrogen compounds was carried out at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan from 1 March to 31 December 2006. Data include NOy, NOx, HNO3, PM1NO3 (50% cutoff of aerosols with an aerodynamic diameter of 1 μm) and PM10NO3 (50% cutoff of aerosols with an aerodynamic diameter of 10 μm) measured at CHAAMS during the same period. Here, we report the seasonal variation of nitrogen compounds and the contribution of particulate NO3 to NOy measured at CHAAMS. In addition, in order to elucidate the chemical transformation process of particulate NO3 during transport and the difference in the process from particulate SO42−, the data were compared with that measured at Qingdao, China in spring 2006. We also analyzed the effect of dust events and volcanic activity on particulate NO3.

2. Experimental Methods

  1. Top of page
  2. Abstract
  3. 1. Introduction
  4. 2. Experimental Methods
  5. 3. Results
  6. 4. Discussion
  7. 5. Conclusion
  8. Acknowledgments
  9. References
  10. Supporting Information

2.1. Measurement at CHAAMS

[8] CHAAMS (26.87°N, 128.25°E, 60 m above sea level) is located at the northern end of Okinawa Island. The site is about 100 km from Naha, which is the largest city on Okinawa Island, and is about 650 km from Shanghai, which is one of the major cities in China (Figure 1). There is no large industrial or residential area near the station. Air masses reaching CHAAMS are transported from China, Korea, Japan, Southeast Asia and the Pacific Ocean, so this site is suitably positioned for researching the characteristics of air pollution after long-range transport in east Asia.

image

Figure 1. Map of east Asia and location of CHAAMS. The five areas of air mass origin are indicated by dashed lines.

Download figure to PowerPoint

[9] PM10NO3 was measured with a nitrate monitor (Rupprecht & Patashnick Co., RP8400) equipped with a PM10 impactor at the end of the inlet. About 50% of aerosols with an aerodynamic diameter of 10 μm were removed by the impactor. Ambient air was introduced into the RP8400 through a half-inch copper pipe from the duct at the station. A heat insulator was installed in the copper pipe to prevent the volatilization of thermodynamically unstable species such as NH4NO3. The flow rate was 5.0 L min−1. The introduced samples were sent to the sampling cell after passing through a carbon denuder, humidifier and orifice that were installed inside the RP8400. Aerosols were collected on a strip of the cell. After 8 min collection, a high electric current was passed through the strip for 0.05 s and the collected aerosols were heated to 350°C, causing particulate NO3 to evaporate and be converted to gas phase NOx. The converted NOx was measured with a chemiluminescence NOx analyzer. Data were averaged to 10 min.

[10] PM1NO3 was measured with a quadrupole aerosol mass spectrometer (Aerodyne Research Inc., Q-AMS) equipped at the inlet with a PM2.5 (50% cutoff of aerosols with an aerodynamic diameter of 2.5 μm) cyclone for removal of coarse particles. Ambient air was introduced into the Q-AMS through a half-inch copper pipe from the duct at the station. The flow rate was 3.0 L min−1. The introduced samples were separated in PM1 by an orifice and aerodynamic lens, with which about 50% of aerosols with an aerodynamic diameter of 1 μm were removed. The separated particles were vaporized on a vaporizer at 600°C after passing through a chopper. The vaporized molecules were ionized by standard 70-eV electron impact ionization. Ions were analyzed by quadruple mass spectrometer, which gives the mass spectra of particle components [Jayne et al., 2000; Takami et al., 2005; Takami et al., 2007]. Ionization efficiency for nitrate was 1.57 ± 0.31 × 10−6 and relative ionization efficiency was 3.3–4.0 for ammonium, 1.2 for sulfate and 1.4 for organics. Collection efficiency was determined by comparing the sulfate concentration obtained by the Q-AMS and a size-resolved impactor [Takami et al., 2007]. Data were averaged to 10 min. In this study, particulate NO3 measured with Q-AMS is defined as PMfNO3 and the difference between PM10NO3 and PM1NO3 is defined as PMcNO3.

[11] Gas phase nitrogen oxides were measured with a NOx analyzer (Horiba, APNA-365) at the Hedo Acid Deposition Monitoring Site, which is adjacent to CHAAMS and operated by the Acid Deposition and Oxidant Research Center (ADORC) in Japan. Data were averaged to 1 h. In the APNA-365, gas phase nitrogen compounds are converted to NO using a molybdenum catalyst. However, HNO3 cannot be measured because it is easily adsorbed on the inner wall of the tube leading to the NOx analyzer. Therefore, we set up a separate system to measure HNO3 and NOy. HNO3 and NOy were measured by the scrubber difference and NO-ozone chemiluminescence (SDCL) method with a NOx analyzer (Thermo Electron, Model 42-TC). In order to measure NOy, the molybdenum catalyst was located outside the station, just after the ambient air inlet. This configuration minimized the adsorption and desorption of HNO3 on the inner wall of the Teflon tube. In the measurement of NOy, both gas phase nitrogen oxides including HNO3 and particulate NO3 in fine and coarse mode were measured at the same time. For the measurement of HNO3, ambient air passes through an HNO3 scrubber to remove gaseous HNO3 before being introduced into the other molybdenum converter. The concentration of [NOy − HNO3] is obtained by this measurement channel. We used a single annular denuder coated with NaCl as the HNO3 scrubber. HNO3 concentration can be obtained by the following equation (Y. Sadanaga et al., A modified gaseous nitric acid analyzer using the scrubber difference and the NO-ozone chemiluminescence methods: For continuous measurements in the marine boundary layer, submitted to Analytical Science, 2008):

  • equation image

[12] In this study, the sum of NOx measured with APNA-365 and HNO3 is defined as gas phase nitrogen oxide, NOy(g). Although NOy became the sum of NOy(g) and PM10NO3 measured with the RP8400, we analyzed only the data where the sum was within ±20% of NOy in consideration of the accuracy of each device.

[13] SO2 was measured with a UV pulse fluorescence SO2 analyzer (Horiba, APNA-360) by the ADORC. Data were averaged to 1 h. Particulate SO42− was measured with Q-AMS. PM2.5 aerosol mass concentration was measured with a tapered element oscillating microbalance (TEOM, Rupprecht & Patashnick Co., RP1400). In the TEOM, a filter cartridge, which is a round shape with diameter of 11 mm, installed in the tip of the balance gives a specific frequency; this frequency decreases as aerosols are collected on the filter cartridge. PM2.5 mass concentration was calculated from the change of frequency. The flow rate was 16.7 L min−1. Data were averaged to 30 min.

[14] Weather conditions such as wind direction, wind velocity, temperature, pressure, relative humidity and precipitation were observed with a weather transmitter (Vaisala, WXT510). Data were averaged to 10 min. The vertical distribution (500–3000 m) of aerosols and their depolarization ratio were observed by a lidar system, which measures the backscattered signal with a laser wavelength of 532 and 1064 nm. The laser wavelength of 532 nm also measures the polarized light characteristics of the backscattered signal, making it possible to distinguish dust particles from anthropogenic particles [Shimizu et al., 2004].

2.2. Measurement at Qingdao

[15] Ground-based measurement was carried out at Qingdao (36.07°N, 120.33°E), China from 5 to 24 April 2006. NOx and SO2 were measured with a chemiluminescence NOx analyzer (TECO, Model 42C) and a UV pulse fluorescence SO2 analyzer (TECO, Model 43C), respectively. A Teflon tube was used for the sampling line. A filter with the pore size of 0.45 μm was used to cut off the particles. Data were averaged to 1 h. Aerosols were collected by a medium flow rate (78 L min−1) sampler (medium volume sampling system, model TSP/PM10/PM2.5-2, Beijing Geological Instrument Factory, Beijing). A cutting cup was attached to select the PM size. The efficiency of the sampler system was checked by the Chinese Center for Disease Control and Prevention, under consignment by the Beijing Geological Instrument Factory. The results showed that the collection efficiency was about 95% at 9.93 μm for the PM10 sampler and 92.7% at 2.47 μm for the PM2.5 sampler. Sampling was carried out for almost 24 h from 0000 UT to the next morning. Ambient air continuously passed through Teflon filters (Advantec, PF020), which sampled aerosols. The sampled aerosols were brought back to the Chinese Research Academy of Environmental Sciences. Cations and anions in the solutions were analyzed using an ion chromatograph (Dionex, DX-500) [Takami et al., 2006a].

[16] In this study, PM2.5 is defined as fine mode, and the difference between PM10 and PM2.5 is defined as coarse mode. NOy is defined as the sum of NOx and PM10NO3. Since Qingdao is an urban area and the air mass above it has not undergone long-range transport, it is considered that NO was chemically transformed NOx (mainly NO + NO2) in the gas phase and NH4NO3 in the particle phase [Kita et al., 2006]. Therefore, we assume that NOy can be calculated as described above.

2.3. Back Trajectory Analysis

[17] Back trajectory analyses were carried out using the HYSPLIT4 model from the American National Oceanic and Atmospheric Administration (NOAA) (R. R. Draxler and G. D. Rolph, HYSPLIT (Hybrid Single-Particles Lagrangian Integrated Trajectory) Model access via NOAA ARL READY website, 2003, available at http://www.arl.noaa.gov/ready/hysplit4.html and G. D. Rolph, Real-time Environmental Applications and Display System (READY) website, 2003, available at http://www.arl.noaa.gov/ready/hysplit4.html). Initial altitude and calculation time were set to 500 m and 96 h, respectively. With the calculated back trajectory, five origins were defined on the basis of the last coastline passed by the air mass: China origin, Korea origin, Japan origin, Southeast Asia origin, and Pacific Ocean origin. Air masses that meandered or passed more than two areas were excluded from the analysis. Air masses that experienced precipitation greater than 1.0 mm h−1 on the basis of HYSPLIT4 were also excluded. As for the Japan origin, Sakurajima (31.59°N, 130.65°E) origin was added. Sakurajima is the one of the active volcanoes in Japan. We set a grid of 1.5 × 1.5° around Sakurajima, and air masses that passed the grid were defined as Sakurajima origin. Air masses of Japan origin do not include those that passed the Sakurajima area.

3. Results

  1. Top of page
  2. Abstract
  3. 1. Introduction
  4. 2. Experimental Methods
  5. 3. Results
  6. 4. Discussion
  7. 5. Conclusion
  8. Acknowledgments
  9. References
  10. Supporting Information

[18] The average concentrations of NOy, NOy(g), PMcNO3, and PMfNO3 at CHAAMS from 1 March to 31 December 2006 were 1.39 ± 0.88 parts per billion by volume (ppbv), 1.16 ± 0.62 ppbv, 0.64 ± 0.53 μg m−3, and 0.15 ± 0.14 μg m−3, respectively. The maximum concentrations were observed at 1600 UT on 19 March, and were 15.33 ppbv, 7.61 ppbv, 7.44 μg m−3, and 3.71 μg m−3, respectively. Figure 2 shows the monthly mean variation in the concentrations of NOy(g), PM10NO3, PMcNO3, and PMfNO3, which were high in spring (March and April) and low in summer (July and August). In autumn (September, October, and November), they were higher than in summer and slightly lower than in spring.

image

Figure 2. Monthly mean variation in concentration of NOy(g) (solid circles), PM10NO3 (open circles), PMcNO3 (solid squares), and PMfNO3 (open squares). Error bars represent 1 standard deviation.

Download figure to PowerPoint

[19] Figure 3 shows the back trajectories of air masses for each season. Air masses were mainly transported from China in spring, the Pacific Ocean in summer, and Japan in autumn. Table 1 shows the average concentrations of NOy, NOy(g), PMcNO3, and PMfNO3 for each air mass origin. The concentrations of China origin were the highest, whereas those of Pacific Ocean origin were the lowest of all origins. PM10NO3 concentration of Pacific Ocean origin was reported to be 0.18–0.35 μg m−3 [Savoie et al., 1989] and 0.15–0.36 μg m−3 [Prospero and Savoie, 1989], which is similar to our measurements (0.20 μg m−3). When the concentrations of Pacific Ocean origin were regarded as background concentrations at CHAAMS, the concentrations of NOy and NOy(g) of China origin were about three times higher than those of the background. As for particulate NO3, both the concentrations of PMcNO3 and PMfNO3 were more than six times higher than the background. Although the concentrations of Japan origin were lower than those of China origin, the concentrations of NOy and NOy(g) were twice as high, and those of PMcNO3 and PMfNO3 were about three times as high as those of the background. The concentrations of Korea origin and Southeast Asia origin were also higher than those of the background. However, evaluation was difficult because of the small sample number.

image

Figure 3. Back trajectories of air masses that reached CHAAMS for (a) spring, (b) summer, (c) autumn, and (d) winter.

Download figure to PowerPoint

Table 1. Average Concentrations of NOy, NOy(g), PMcNO3, and PMfNO3 of China Origin for Each Origin Including All Periods, Dust, and Nondust Events
OriginNOy, ppbvNOy(g), ppbvAerosol, μg m3Sample Number
PMcNO3PMfNO3
      
China2.20 ± 1.221.60 ± 0.711.05 ± 0.820.22 ± 0.16220
   Dust2.38 ± 1.271.71 ± 0.731.22 ± 0.900.24 ± 0.18136
   Nondust1.84 ± 1.031.39 ± 0.640.71 ± 0.460.18 ± 0.1184
Japan1.28 ± 0.451.20 ± 0.430.51 ± 0.220.12 ± 0.02103
Korea0.91 ± 0.410.68 ± 0.390.37 ± 0.260.10 ± 0.0728
Southeast Asia0.82 ± 0.350.70 ± 0.220.36 ± 0.230.05 ± 0.0827
Pacific Ocean0.64 ± 0.390.61 ± 0.170.17 ± 0.100.03 ± 0.03373
All periods1.39 ± 0.881.16 ± 0.620.64 ± 0.530.15 ± 0.14

[20] Figure 4 shows the monthly mean variation in fractions of NOy(g) and PM10NO3 in NOy, and that of PMcNO3 and PMfNO3 in PM10NO3. The fraction of PM10NO3 in NOy was 20–30% in spring and autumn, whereas it was about 10% in summer. As for particulate NO3, the fraction of PMfNO3 in PM10NO3 was 20–30% in spring and autumn. The fraction was about 10% in summer, indicating that PMcNO3 was a major component in PM10NO3.

image

Figure 4. Monthly mean variation of NOy(g)/NOy (solid circles), PM10NO3/NOy (open circles), PMcNO3/PM10NO3(solid squares), and PMfNO3/PM10NO3 (open squares). Error bars represent 1 standard deviation.

Download figure to PowerPoint

[21] The lidar results showed that dust plumes (kosa) often reached CHAAMS in spring. The average concentrations of NOy, NOy(g), PMcNO3, and PMfNO3 were 2.38 ± 1.27 ppbv, 1.71 ± 0.73 ppbv, 1.22 ± 0.90 μg m−3, and 0.24 ± 0.18 μg m−3, respectively, when dust plumes reached CHAAMS. Detailed discussion is given in section 4.1. TEOM results showed that the variation in PM2.5 mass concentration was similar to that of NOy(g) and PM10NO3.

[22] The average concentrations of NOy, NOx, PMcNO3, and PMfNO3 at Qingdao from 5 to 24 April 2006 were 12.67 ± 5.42 ppbv, 11.12 ± 5.12 ppbv, 1.34 ± 1.38 μg m−3, and 2.70 ± 1.65 μg m−3, respectively. The maximum concentrations were 24.37 ppbv, 22.79 ppbv, 5.86 μg m−3, and 6.45 μg m−3, respectively. When air masses were transported from the Qingdao area to CHAAMS from 5 to 24 April, the average concentrations of NOy, NOy(g), PMcNO3, and PMfNO3 at CHAAMS were 1.98 ± 0.55 ppbv, 1.44 ± 0.41 ppbv, 0.88 ± 0.34 μg m−3, and 0.20 ± 0.17 μg m−3, respectively. In contrast with the results at Qingdao, the concentration of PMcNO3 was higher than that of PMfNO3 at CHAAMS.

4. Discussion

  1. Top of page
  2. Abstract
  3. 1. Introduction
  4. 2. Experimental Methods
  5. 3. Results
  6. 4. Discussion
  7. 5. Conclusion
  8. Acknowledgments
  9. References
  10. Supporting Information

4.1. Seasonal Variation

[23] The reason for the high concentrations of NOy(g) and PM10NO3 observed in spring is considered to be due to air masses transported from continental China, which are associated with the eastward movement of low- and high-pressure systems from China. It is suggested that the transport of air pollutants is related to the movement of low- and high-pressure systems [Uno et al., 1998; Takami et al., 2006b]. Hatakeyama et al. [2001] reported that highly polluted air was transported from central China to the East China Sea when a low-pressure system originating near Taiwan moved along Japan to the northwest Pacific Ocean. In addition, highly polluted air was observed when a high-pressure system moved from central eastern China to the northern East China Sea [Hatakeyama et al., 2004]. The travel of a cold front with a low-pressure system lifts the air pollutants ahead of the front and the continental outflow of precursors occurs behind the front. A high-pressure system confines air pollutants within the lower troposphere by the strong downward motion of air. These highly polluted air masses are transported eastward by westerly winds [Carmichael et al., 1998; Bey et al., 2001; Liang et al., 2004].

[24] Back trajectory analyses show that air masses were often transported from continental China in spring when the concentrations of NOy(g) and PM10NO3 were high (Figure 3a). In this case, a low- or high-pressure system originating in continental China moved toward the east or southeast and covered the whole of Okinawa Island, where CHAAMS is located. This indicates that the transport of air pollutants from China was frequently accompanied by movement of a low- or high-pressure system. The lidar results showed that dust plumes often reached CHAAMS in spring. In this case, too, it was suggested that air masses were transported from China on the basis of back trajectory analyses and weather patterns as described above. In events of China origin, the average concentrations of NOy, NOy(g), PMcNO3, and PMfNO3 during dust events were higher than those of nondust events (Table 1). In particular, the rate of increase in PMcNO3 was highest and rose to about 1.7 and 2.0 times in comparison with the nondust events of China origin and the average for all observation periods, respectively. It is considered that alkaline dust particles can take up acids resulting in increased coarse mode NO3 [Song and Carmichael, 2001; Jordan et al., 2003]. Therefore, the increase of PMcNO3 at CHAAMS during dust events is closely related to the transport of dust from the continent. Thus, it can be concluded that the high concentrations of NOy(g) and PM10NO3 in spring were due to the frequent transport of air masses from continental China by low- and high-pressure systems including dust events.

[25] The low concentrations in summer are mainly due to cleaner air masses from the Pacific Ocean. Okinawa Island is usually covered by the Pacific high-pressure system in summer, in which air masses are frequently transported from the Pacific Ocean where no anthropogenic emission is expected. In this way, the seasonal variation is mainly controlled by the air mass history associated with the weather pattern for each season.

[26] The fraction of PM10NO3 in NOy in summer was 10%, which was the lowest among all seasons. This seems to be related to the air mass history and the time spent in the atmosphere. There are no anthropogenic sources in the Pacific Ocean, so less NOx and NH3 are available to produce particulate NO3. NH4NO3 cannot easily be maintained because the average summer temperature is about 30°C at CHAAMS. Also, most of the PMcNO3 is deposited before reaching CHAAMS because air masses stay in the marine atmosphere for a long time. This is why the fraction of PM10NO3 in NOy was lowest in summer, and the major species of nitrogen compounds in air masses was NOy(g).

4.2. Chemical Transformation of Reactive Nitrogen During Transport

[27] When gas phase acids are emitted, they are oxidized by reaction with photochemically produced hydroxyl radical (OH), and then form secondary aerosols through the processes of nucleation, condensation/evaporation, and absorption of atmospheric inorganic species, which are partitioned into gaseous and condensed (particles) phases. Secondary aerosols can also form by heterogeneous reaction. For example, uptake of SO2 to existing aerosol produces H2SO4. The liquid phase reaction of SO2 and H2O can form SO42− in aerosols. As for reactive nitrogen, HNO3 is produced via reaction between NO2 and OH radical, and particulate NO3 is formed by adsorption of HNO3 in existing particles. In this section, we analyze the chemical transformation of particulate NO3 during transport from Qingdao, China to CHAAMS, Okinawa.

[28] We set a grid of 1.5° × 1.5° around Qingdao, and air masses that passed the grid were defined as being of Qingdao origin. The selected air masses reached CHAAMS via this region from 5 to 24 April 2006, and the air masses the meandered after passing through this region were excluded from the analysis. The selected sample number was 63 (about 6 days including 3 dust events) in this manner. For the selected air masses, the concentrations of NOx, PMfNO3, and PMcNO3 at Qingdao were compared with those at CHAAMS. Figure 5 shows the variation in nitrogen oxide as the transport time increased. In this analysis, the transport time = 0 was set when air masses passed Qingdao, where NOy(g) was defined by NOx and NOy was defined by the sum of NOx and PM10NO3 (section 2.2). The transport time was defined as the time taken for air masses to travel from the Qingdao region to CHAAMS, which is the time spent over the sea and is calculated using HYSPLIT4.

image

Figure 5. Variation in nitrogen oxide and sulfur oxide with transport time for concentrations of (a) NOy(g) (solid circles) and PM10NO3 (open circles), (b) NOy(g)/NOy (solid circles) and PM10NO3/NOy (open circles), (c) PMfNO3/PM10NO3 (open squares) and PMcNO3/PM10NO3 (solid squares), (d) concentrations of SO2 (solid triangles) and nss-SO42− (open triangles), and (e) SO2/SOy (solid triangles) and nss-SO42−/SOy (open triangles).

Download figure to PowerPoint

[29] The concentrations of NOy(g) and PM10NO3 continuously decreased as the transport time increased (Figure 5a). This is due to dry and/or wet deposition and dilution with other air masses during transport. Figure 5b shows that the variation in fractions of NOy(g) and PM10NO3 in NOy. As the transport time increased, the fraction of NOy(g) continuously decreased, whereas that of PM10NO3 continuously increased. This suggests that nitrogen oxides in the gas phase were converted to particulate NO3 during transport. As for the size of particulate NO3, the fraction of PMcNO3 in PM10NO3 increased, while that of PMfNO3 decreased (Figure 5c). In other words, most of the converted particulate NO3 was PMcNO3.

[30] The chemical transformation process of particulate NO3 during transport is considered as follows. In China, large amounts of NH3 are emitted through agricultural activities such as fertilizer application [Streets et al., 2003] in addition to NOx (NO + NO2) emission from fossil fuel combustion and biomass burning. HNO3, which is formed from the oxidation of NOx, produces NH4NO3 through the reaction with NH3. The existence of NH4NO3 indicates that NOy contains both NOy(g) and PMfNO3. In addition, the fraction of PMfNO3 in PM10NO3 is higher than that of PMcNO3. Thus it is considered that the main components of NOy were NOy(g) and NH4NO3 at the Qingdao area. On the other hand, the fraction of PMcNO3 in PM10NO3 was higher than that of PMfNO3 at CHAAMS. This is explained as follows. The decomposition of NH4NO3 to HNO3 and NH3 occurs while air masses are approaching CHAAMS, since it is located in the southern area where the temperature is higher. Air masses mix with marine air and/or dust plumes, whereupon HNO3 is absorbed by coarse particles such as sea salt and dust particles. Thus, the fraction of PMcNO3 in PM10NO3 was higher than that of PMfNO3 at CHAAMS. This is supported by the results obtained by Matsumoto et al. [1998], who measured aerosols at Hahajima (140.10°E, 26.38°N) from 1994 to 1997 and reported that the fraction of PMfNO3 (Dp < 1.1 μm) and PMcNO3 (Dp > 1.1 μm) was 2.7 and 97.3%, respectively. The observation site is about 1300 km east of CHAAMS, suggesting that the longer the transport time is under relatively high temperature, the larger the fraction of PMcNO3 in PM10NO3 becomes [Shimohara et al., 2001].

[31] Figure 6 shows the variation in ratio for each NOy component of China origin with respect to the transport time for all observation periods. In Figure 6, other gases are defined as gas phase nitrogen compounds, which are calculated by subtracting the sum of HNO3 and PM10NO3 from NOy. As the transport time increases, the ratio of PMcNO3 in NOy increased and accounted for half of NOy when the transport time exceeded 48 h (Table 2). The variation of HNO3 was similar to that of PMcNO3. The ratio was about 10% when the transport time was within 24 h, and rose to 25% when the transport time exceeded 48 h. This suggests that the main components of NOy become HNO3 and PMcNO3 as air masses are transported from Qingdao to CHAAMS. As for other gases, the main component is NOx, which is the precursor of HNO3. The ratio decreased as the transport time increased, suggesting that NOx is converted to HNO3 and particulate NO3 during transport. Although PAN was not measured at CHAAMS, as it is important as a reservoir of NOx [Talbot et al., 2003], it is necessary to consider the temperature dependence of its stability. Miyazaki et al. [2005] reported PAN concentrations and their fraction in NOy with latitudes over the western Pacific during the TRACE-P campaign. They evaluated that both PAN concentrations and the fraction were lower at 10–30°N (189 pptv, 0.20) than at 30–45°N (928 pptv, 0.33), consistent with its chemical stability at lower temperatures. It is considered that the warmer temperature in CHAAMS results in a release of NOx from decomposition of PAN as well as a release of HNO3 from NH4NO3. The average ratio of PMfNO3 in NOy was 4% due to the temperature effect on NH4NO3. In this way, the chemical transformation process of nitrogen compounds is influenced by the transport time of air masses, the geographical position of Okinawa and the temperature dependence of NH4NO3, particularly in particulate NO3.

image

Figure 6. Ratio of each NOy component of China origin with respect to transport time for all observation periods.

Download figure to PowerPoint

Table 2. Ratio of Each NOy Component of China Origin With Respect to Transport Time
Transport Time, hHNO3, ppbvPMcNO3, μg m−3PMfNO3, μg m−3Other Gases, ppbvSample Number
0–240.11 ± 0.070.17 ± 0.050.04 ± 0.020.68 ± 0.0831
25–360.15 ± 0.090.20 ± 0.090.04 ± 0.020.61 ± 0.12140
37–480.20 ± 0.080.21 ± 0.070.03 ± 0.020.56 ± 0.1027
49–600.25 ± 0.080.48 ± 0.090.04 ± 0.030.23 ± 0.1122
Average0.15 ± 0.090.20 ± 0.090.04 ± 0.020.60 ± 0.13220
Maximum0.460.580.120.82
Minimum0.010.050.010.10

[32] The variation in sulfur oxides is shown in Figures 5d and 5e since their chemical transformation process during transport is very different from that of nitrogen compounds. Here, SOy is defined as the sum of SO2 and nss-SO42−. One of the differences in conversion processes of sulfur oxide and nitrogen oxide is whether volatilization from particles can occur or not. As for nitrogen oxides, HNO3 can be volatilized from particles, which depends on the temperature, relative humidity and chemical composition of aerosols. The volatilized HNO3 is taken up by coarse particles such as sea salt and dust particles, forming particulate NO3 in coarse mode. In contrast, nss-SO42− is continuously formed by gas-to-particle conversion. As the transport time increased, the fraction of SO2 in SOy continuously decreased, whereas that of nss-SO42− continuously increased. This suggests that sulfur oxides in the gas phase are converted to nss-SO42− during transport. Moreover, the production of nss-SO42− is faster than that of particulate NO3. For example, the fraction of nss-SO42− in SOy is about 60%, whereas the fraction of PM10NO3 in NOy is about 20% when the transport time is less than 24 h. This means that particulate NO3 forms a coarse mode during transport in contrast to nss-SO42− which is transported in a fine mode. Song and Carmichael [1999] reported the aging process of gas phase anthropogenic pollutants and aerosols during long-range transport using a Simulating Composition of Atmospheric Particles at Equilibrium (SCAPE) model [Kim et al., 1993a, 1993b]. The results showed that nitrogen oxide shifts to a coarse mode from gas phase and sulfur oxide shifts to a fine mode from the gas phase, which is consistent with this study.

[33] In order to examine the influence of the transformation process on the transported amount of pollutants, NOy and SOy concentrations at Qingdao were compared with those at CHAAMS (Table 3). Both NOy and SOy concentrations at CHAAMS are assumed to be from the same air masses that passed over the Qingdao area in April 2006 on the basis of back trajectory analyses. The ratios of NOy and SOy transported are defined as

  • equation image

where Cc is the concentration at CHAAMS, Cq is the concentration at Qingdao and Cb is the concentration of Pacific Ocean origin, which is defined as a background concentration. The results showed that RNOy and RSOy were 10.6 and 26.1%, respectively, suggesting that the fraction of NOy transported from Qingdao to CHAAMS was less than that of SOy. This evaluation focused on the effect of dry deposition, but most of the selected air masses did not experience precipitation, and if any, experienced precipitation of less than 0.5 mm h−1 according to HYSPLIT4 and WXT510. Therefore, it is considered that the effect of wet deposition is negligible in this analysis.

Table 3. Average Concentrations at Qingdao and CHAAMS From 5 to 24 April 2006a
PlaceGas, ppbvAerosol, μg m−3NOy, ppbvSOy, ppbv
NOy(g)SO2PMcNO3PMfNO3nss-SO42−
  • a

    Concentrations at CHAAMS are data on air masses that were transported from the Qingdao area during the same period.

CHAAMS1.44 ± 0.410.74 ± 0.440.88 ± 0.340.20 ± 0.175.36 ± 4.191.98 ± 0.552.82 ± 1.79
Qingdao11.21 ± 5.125.66 ± 3.551.34 ± 1.382.70 ± 1.654.04 ± 2.3112.67 ± 5.427.55 ± 4.24

[34] The difference in the fraction transported from China between NOy and SOy is likely caused by the difference in chemical transformation process during transport. The main components of sulfur oxide are nss-SO42− and those of nitrogen oxide are HNO3 and PMcNO3. Zhang et al. [2003] reported that the dry deposition velocities of SO2, H2SO4 and HNO3 for water surface are 2.1, 2.0 and 2.6 cm s−1, respectively. Therefore, the lifetime is evaluated by the following equation [Morino et al., 2006]:

  • equation image

where τx is the lifetime (τx; s) for species x, and Vx is the dry deposition velocity (cm s−1). H is the boundary layer depth (m) and is assumed here to be 1000 m as the marine boundary layer. τSO2, τH2SO4 and τHNO3 were calculated to be 13.2, 13.9 and 10.7 h, respectively. The dry deposition velocity of fine particles and coarse particles was evaluated by the difference in diameter and was assumed to be 0.03 and 0.22 cm s−1, respectively [Matsuda et al., 2001]. τfine and τcoarse were 925.9 and 126.3 h, respectively.

[35] The lifetimes of HNO3 and PMcNO3 are less than 0.5 and about 5 days, respectively, whereas that of nss-SO42− is more than a month. SO2 and H2SO4 are considered to be the main deposition form of sulfur oxide for the transport time of air masses from the Qingdao area to CHAAMS (average 24 h). However, the effects of the deposition process of SO2 and H2SO4 on the loss of SOy are minimal because both species are converted to nss-SO42− at the source region and/or during transport. As shown in Figure 5d, it is for this reason that nss-SO42− concentration did not decrease as the transport time increased. On the other hand, the lifetimes of HNO3 and PMcNO3 are shorter than that of nss-SO42−. In addition, decomposition of NH4NO3 in fine particles occurs during transport, resulting in the conversion to HNO3 and PMcNO3. Thus, the loss of NOy is strongly affected by the chemical forms of HNO3 and PMcNO3. In this way, the chemical transformation process during transport largely influences the fraction of NOy transported from Qingdao to CHAAMS in addition to the dry/wet deposition and the dilution processes during transport.

4.3. Variation in Particulate NO3 When Dust Plumes Reached CHAAMS

[36] On 19 March 2006, the concentrations of NOy(g) and PM10NO3 were the highest. Figure 7 shows the variation in concentrations of NOy(g), PMcNO3, and PMfNO3 from 16 to 20 March 2006. Also shown are the weather conditions (relative humidity and wind direction), PM2.5 mass concentration measured by TEOM and time-height cross section of the extinction coefficient of mineral dust and spherical aerosols by lidar during the same period. Frontal systems associated with a low-pressure system passed over CHAAMS twice during this period. The first one passed at around 0500 UT on 16 March when the wind direction changed from south to north and the relative humidity suddenly decreased. The lidar results show that dust plumes reached CHAAMS around the same time (Figure 7b). As the front was approaching, NOy(g) concentration increased, whereas the concentration of PMcNO3 gradually decreased. The concentration of PMfNO3 increased when the front passed, showing that the variation in PMfNO3 was similar to that of NOy(g). In this case, it is supposed that air pollutants reached CHAAMS earlier than dust plumes. Back trajectory analysis shows that the origin of air pollutants was Shanghai. Similar time lags for air pollutants and dust plumes were also reported by Uematsu et al. [2002], Matsumoto et al. [2003], Hatakeyama et al. [2004], and Takami et al. [2005].

image

Figure 7. (a) The 1-h average concentrations of NOy(g) (blue), PMcNO3 (red), and PMfNO3 (green). The 1-h average PM2.5 mass concentration (black), 1-h average relative humidity (gray), and 1-h average wind direction (squares) from 16 to 20 March 2006. The passage of the front was identified from relative humidity, wind direction, and surface weather charts and is marked by two dashed lines. (b) Time-height cross section of the extinction coefficient of mineral dust and spherical aerosols observed with a polarization lidar at CHAAMS.

Download figure to PowerPoint

[37] Another front passed at around 0900 UT on 18 March when the wind direction changed from south to north and the relative humidity suddenly decreased as in the first case. The lidar results show that dust plumes reached CHAAMS at around the same time, too. As the front approached, the concentrations of NOy(g), PMcNO3, and PMfNO3 simultaneously increased and peaked at 1600 UT on 18 March. In this regard, Hatakeyama et al. [2004] reported that dust plumes and air pollutants were found in different layers in the marine areas between China and Japan. Therefore, in this case it is considered that dust plumes behind cold fronts of a low-pressure system intermingled, at least to some extent, with aged air pollutants. However, observational data are not yet available to help determine how they intermingle in the marine atmosphere. The synchronized increase of coarse and fine particles was also reported by Zhang et al. [2006]. After that, the concentrations of NOy(g), PMcNO3 and PMfNO3 temporarily decreased. Back trajectory analyses show that there was rainfall during transport.

[38] Although air pollutants and dust plumes showed different patterns and times taken to reach CHAAMS, the presence of dust affected PMcNO3 concentration and the distribution of NOy in the same manner. In the 16 March event, the fraction of PMcNO3 in NOy was 0.08 ± 0.05 for 6 h before the fronts passed, which was not observed with the dust plumes at CHAAMS. On the other hand, the fraction rose to 0.18 ± 0.01 when the fronts passed over CHAAMS and dust plumes began to be observed, after which the fraction changed to 0.20–0.35 until another front passed. These variations also appeared in the 18 March event. The fraction of PMcNO3 in NOy was 0.17 ± 0.03 for 3 h before the fronts passed and 0.28 ± 0.01 after they passed. This suggests that the presence of dust produces PMcNO3 and increases the fraction of PMcNO3 in NOy.

[39] After the concentrations of NOy(g), PMcNO3, and PMfNO3 simultaneously peaked at 1600 UT on 18 March and temporarily decreased by rainfall during the transport, they peaked at 0100 UT on 19 March again. The difference between these two peak events was the distribution of PMcNO3 and PMfNO3. The fraction of PMcNO3 in PM10NO3 around about 1 h of the first and second peak time was 0.67 ± 0.01 and 0.89 ± 0.03, respectively. As compared with the first peak, the second peak shows that PMcNO3 concentration was lower, and its fraction in PM10NO3 was higher. This is considered to be due to the higher dust levels. The height distribution of dust might influence the distribution of PMcNO3 and PMfNO3 in PM10NO3, but there are insufficient observation data to evaluate how they are associated with the formation of particulate NO3.

4.4. Effect of Volcanic Activity on Particulate NO3

[40] On the basis of back trajectory analyses, we selected the air masses that passed the Sakurajima area (section 2.3) and analyzed the impacts of sulfur oxide caused by volcanic activity on nitrogen oxide. The sample numbers of Sakurajima and Japan origin were 78 and 103, respectively.

[41] The average concentrations of SO2 and nss-SO42− of Sakurajima origin were 1.74 ± 1.42 ppbv and 16.32 ± 11.73 μg m−3, respectively, whereas those of Japan origin were 0.60 ± 0.47 ppbv and 3.95 ± 0.40 μg m−3, respectively. This suggests that the air masses of Sakurajima origin reached CHAAMS under the influence of volcanic activity. The concentrations of NOy, HNO3, PMcNO3, and PMfNO3 of Sakurajima origin were 1.11 ± 0.40 ppbv, 0.25 ± 0.19 ppbv, 0.43 ± 0.21 μg m−3 and 0.09 ± 0.05 μg m−3, respectively. On the other hand, those of Japan origin were 1.28 ± 0.45 ppbv, 0.17 ± 0.08 ppbv, 0.51 ± 0.22 μg m−3, and 0.12 ± 0.02 μg m−3, respectively. It is found that a slight increase of HNO3 was observed when air masses passed the Sakurajima area before reaching CHAAMS (Table 4), while NOy, PMcNO3, and PMfNO3 slightly decreased though the standard deviation is relatively large. We consider this to be the effect of sulfur dioxide with volcanic activity.

Table 4. Average Concentrations of Sakurajima and Japan Origin
OriginGas, ppbvAerosol, μg m−3NOy, ppbvSample Number
NOxHNO3SO2PMcNO3PMfNO3nss-SO42−
Sakurajima0.73 ± 0.330.25 ± 0.191.74 ± 1.420.43 ± 0.210.09 ± 0.0516.32 ± 11.731.11 ± 0.4078
Japan0.98 ± 0.470.17 ± 0.080.60 ± 0.470.51 ± 0.220.12 ± 0.023.95 ± 0.401.28 ± 0.45103

[42] The air masses that passed the Sakurajima area originated from areas of human activity in Japan and contained a high fraction of PMfNO3 in PM10NO3. However, PMfNO3 is converted to PMcNO3 through decomposition and adsorption by sea salt during transport. As the air masses passed the Sakurajima area, sulfur oxide was supplied to them. HNO3, which was adsorbed by sea salt, was substituted by H2SO4 (2NaNO3 + H2SO4 [RIGHTWARDS ARROW] Na2SO4 + 2HNO3). The increase in HNO3 and decrease in PMcNO3 resulted from this reaction. PMfNO3 can also be substituted by H2SO4 as well as PMcNO3. Undecomposed NH4NO3 was substituted by H2SO4 (2NH4NO3 + H2SO4 [RIGHTWARDS ARROW] (NH4)2SO4 + 2HNO3), resulting in the lower concentration of PMfNO3 of Sakurajima origin compared to that of Japan origin.

[43] The lower NOy concentration of Sakurajima origin compared to that of Japan origin is considered to be due to the increase in HNO3. The lifetime of HNO3 was shorter than the transport time of air masses from the Sakurajima area to CHAAMS (about 30 h). This suggests that the substituted HNO3 was deposited during transport from the Sakurajima area to CHAAMS. In other words, the ratio of HNO3 to NOy became high when the air masses passed Sakurajima, resulting in the decrease in NOy. Kajino et al. [2005] conducted model analysis and reported that the deposition of NO3 was accelerated by the supply of volcanic sulfate, which is consistent with our observation.

5. Conclusion

  1. Top of page
  2. Abstract
  3. 1. Introduction
  4. 2. Experimental Methods
  5. 3. Results
  6. 4. Discussion
  7. 5. Conclusion
  8. Acknowledgments
  9. References
  10. Supporting Information

[44] Ground-based measurement of total NOy, NOy(g) and particulate NO3 was carried out at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan from spring to winter 2006. The concentrations of NOy, NOy(g) and particulate NO3 were simultaneously high in spring and low in summer. Back trajectory analyses showed that air masses were transported mainly from continental China under the influence of low- and high-pressure systems in spring and were transported mainly from the Pacific Ocean under the influence of the Pacific high-pressure system in summer. These facts suggest that the seasonal variations in nitrogen compounds are strongly associated with the typical weather pattern observed in east Asia for each season. In addition, the concentration of particulate NO3 in coarse mode was high in spring, when dust plumes reached CHAAMS, as shown by the lidar results. The concentration during dust events increased about 2.0 times as compared with the average for all periods. The fraction of particulate NO3 in NOy in summer was 10%, which was the lowest among all seasons. This seems to be related to the air mass history, the decomposition of NH4NO3 and the time spent in the atmosphere.

[45] In order to elucidate the chemical transformation process of particulate NO3 during transport, we compared the data observed at Qingdao, China with that at CHAAMS in spring 2006. Particulate NO3 was mainly found in coarse particles at CHAAMS, whereas it was mainly found in fine particles at Qingdao. When the transport time of air masses becomes longer, nitrogen oxides in the gas phase were converted to particulate NO3, which continuously shifted from fine mode to coarse mode during transport. It was found that the chemical transformation process of particulate NO3 was mainly associated with the transport time of air masses, the geographical position at CHAAMS and the temperature dependence of NH4NO3. It was also found that the ratio of NOy concentration observed at CHAAMS to that at Qingdao was about 0.1, which was lower than that of SOy (about 0.3). In contrast to particulate SO42− which is transported in a fine mode, particulate NO3 forms a coarse mode during transport. Since the lifetimes of fine particles are longer than those of coarse particles, the difference in chemical transformation process during transport is considered to influence the abundance of transported NOy and SOy.

[46] The variations in NOy(g) and particulate NO3 were analyzed when dust plumes reached CHAAMS. The concentrations of NOy(g) and particulate NO3 in both fine and coarse mode increased with a few hours delay as a frontal system approached. Air pollutants were observed to reach CHAAMS earlier than dust plumes. Simultaneous increase in the concentrations of NOy(g) and particulate NO3 in fine and coarse mode was also observed. In this case, it is considered that dust plumes intermingled with aged air pollutants during transport. There was agreement between the two cases that the fraction of particulate NO3 in coarse mode in NOy increased after the fronts passed. This suggests that the presence of dust causes the formation of particulate NO3 in coarse mode and the increase of its fraction in NOy. In addition, the fraction of particulate NO3 in coarse mode in PM10NO3 was high when dust plumes existed with much higher concentration.

[47] The effects of volcanic activity on nitrogen compound concentrations were analyzed. The data showed that HNO3 concentrations slightly increased, while the concentrations of NOy and particulate NO3 slightly decreased. We consider that particulate NO3 escaped to gas phase HNO3 through the uptake of abundant volcanic H2SO4 by aerosols, resulting in a high ratio of HNO3 to NOy.

Acknowledgments

  1. Top of page
  2. Abstract
  3. 1. Introduction
  4. 2. Experimental Methods
  5. 3. Results
  6. 4. Discussion
  7. 5. Conclusion
  8. Acknowledgments
  9. References
  10. Supporting Information

[48] This research was supported by the Global Environment Research Fund from the Ministry of Environment, Japan (C-51, 2005–2007), and the Western Pacific Air-Sea Interaction Study (W-PASS, 2006–2010).

References

  1. Top of page
  2. Abstract
  3. 1. Introduction
  4. 2. Experimental Methods
  5. 3. Results
  6. 4. Discussion
  7. 5. Conclusion
  8. Acknowledgments
  9. References
  10. Supporting Information

Supporting Information

  1. Top of page
  2. Abstract
  3. 1. Introduction
  4. 2. Experimental Methods
  5. 3. Results
  6. 4. Discussion
  7. 5. Conclusion
  8. Acknowledgments
  9. References
  10. Supporting Information
FilenameFormatSizeDescription
jgrd14457-sup-0001-t01.txtplain text document1KTab-delimited Table 1.
jgrd14457-sup-0002-t02.txtplain text document1KTab-delimited Table 2.
jgrd14457-sup-0003-t03.txtplain text document0KTab-delimited Table 3.
jgrd14457-sup-0004-t04.txtplain text document0KTab-delimited Table 4.

Please note: Wiley Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.