SEARCH

SEARCH BY CITATION

References

  • Adams, J., and A. Filice (1967), Spectral reflectance 0.4 to 2.0 microns of silicate rock powders, J. Geophys. Res., 72, 57055715.
  • Amsden, A. A., H. W. Ruppel, and C. W. Hirt (1980), SALE: A simplified ALE computer program for fluid flow at all speeds, Tech. Rep. LA-8095, Los Alamos National Laboratory, Los Alamos, N. M.
  • Anderson, J., P. Schultz, and J. Heineck (2004), Experimental ejection angles for oblique impacts: Implications for the subsurface flow-field, Meteorit. Planet. Sci., 39(2), 303320.
  • Austin, M., J. Thomsen, S. Ruhl, D. Orphal, W. Borden, S. Larson, and P. Schultz (1981), Z-model analysis of impact cratering: An overview, in Multi-ring Basins, edited by P. H. Schultz, and R. Merill, pp. 197205, Pergamon, New York.
  • Baloga, S. M., S. A. Fagents, and P. J. Monginis-Mark (2005), Emplacement of Martian rampart crater deposits, J. Geophys. Res., 110, E10001, doi:10.1029/2004JE002338.
  • Bandfield, J. L. (2002), Global mineral distributions on Mars, J. Geophys. Res., 107(E6), 5042, doi:10.1029/2001JE001510.
  • Bandfield, J. L., V. E. Hamilton, and P. R. Christensen (2000), A global view of Martian surface compositions from MGS-TES, Science, 287(5458), 16261630.
  • Baratoux, D., C. Delacourt, and P. Allemand (2002), An instability mechanism in the formation of the Martian lobate craters and the implications for the rheology of ejecta, Geophys. Res. Lett., 29(8), 1210, doi:10.1029/2001GL013779.
  • Baratoux, D., N. Mangold, P. Pinet, and F. Costard (2005), Thermal properties of lobate ejecta in Syrtis Major, Mars: Implications for the mechanisms of formation, J. Geophys. Res., 110, E04011, doi:10.1029/2004JE002314.
  • Barlow, N. G. (2005), A review of Martian impact craters ejecta structures and their implications for target properties, special paper, in Large Meteoritics Impacts III, Spec. Pap. Geol. Soc. Am., 384, 433442, doi:10.1130/0-8137-2384-1.
  • Barlow, N. G., and T. L. Bradley (1990), Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude and terrain, Icarus, 87, 156179.
  • Barlow, N. G., and C. B. Perez (2003), Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles, J. Geophys. Res., 108(E8), 5085, doi:10.1029/2002JE002036.
  • Barlow, N. G., J. M. Boyce, F. M. Costard, R. A. Craddock, J. B. Garvin, S. E. H. Sakimoto, R. O. Kuzmin, D. J. Roddy, and L. A. Soderblom (2000), Standardizing the nomenclature of Martian impact crater ejecta morphologies, J. Geophys. Res., 105(E11), 26,73326,738.
  • Barnouin-Jha, O. S., and P. H. Schultz (1996), Ejecta entrainment by impact-generated ring vortices: Theory and experiments, J. Geophys. Res., 101(E9), 21,09921,115.
  • Barnouin-Jha, O., P. H. Schultz, and J. Lever (1999), Investigating the interactions between an atmosphere and an ejecta curtain. 2. Numerical experiments, J. Geophys. Res., 104(E11), 27,11727,131.
  • Bell, J. I. III, M. J. Wolff, P. B. James, R. T. Clancy, S. W. Lee, and L. J. Martin (1997), Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: Observations, calibrations and initial results, J. Geophys. Res., 102(E4), 91099123.
  • Bell, J. F. III, et al. (2000), Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder, J. Geophys. Res., 105(E1), 17211756.
  • Bibring, J.-P., et al. (2005), Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science, 307(5515), 15761581.
  • Boyce, J. M., P. J. Mouginis-Mark, H. Garbeil, and L. A. Soderblom (2006), History of major crater degradational events on Mars: Preliminary results from crater depth and diameter measurements, Proc. Lunar Planet. Sci. Conf. 37th, Abstract 2354.
  • Croft, S. K. (1980), Cratering flow fields: Implications for the excavation and transient expansion stages of crater formation, Proc. Lunar Planet. Sci. Conf., 21st, 23472378.
  • Forsberg-Taylor, N. K., A. D. Howard, and R. A. Craddock (2004), Crater degradation in the Martian highlands: Morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes, J. Geophys. Res., 109, E05002, doi:10.1029/2004JE002242.
  • Garvin, J. B., S. E. H. Sakimoto, J. Frawley, and C. Schnetzler (2000), North polar region craterforms on Mars: Geometric characteristics from the Mars Orbiter Laser Altimeter, Icarus, 144(2), 329352.
  • Garvin, J. B., S. Sakimoto, and J. Frawley (2003), Craters on Mars: Global geometric properties from gridded MOLA topography, paper presented at Sixth International Conference on Mars, Lunar and Planet. Inst., Pasadena, Calif.
  • Gendrin, A., et al. (2006), Strong pyroxene absorption bands on Mars identified by OMEGA: Geological counterpart, Proc. Lunar Planet. Sci. Conf. 37th, Abstract 1858.
  • Hartmann, W. (2005), Martian cratering 8: Isochron refinement and the chronology of Mars, Icarus, 174, 294320, doi:10.1016/j.icarus.2004.11.023.
  • Hiesinger, H., and J. W. Head III (2004), The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data, J. Geophys. Res., 109, E01004, doi:10.1029/2003JE002143.
  • Hiroi, T., C. Pieters, and S. Noble (2000), Improved scheme of modified Gaussian deconvolution for reflectance spectra of lunar soils, Proc. Lunar Planet. Sci. Conf. 31st, Abstract 1548.
  • Holsapple, K., and R. Schmidt (1987), Point source and coupling parameters in cratering mechanics, J. Geophys. Res., 92, 63506376.
  • Hörz, F., R. Osterstag, and D. A. Rainey (1983), Bunte breccia of the ries: Continuous deposits of large impact craters, Rev. Geophys., 21, 16671725.
  • Housen, K., R. Schmidt, and K. Holsapple (1983), Crater ejecta scaling laws, fundamental forms based on dimensionnal analysis, J. Geophys. Res., 88(B3), 24852499.
  • Ivanov, B. (2003), Education experience in numerical modeling of impact cratering, in Impact Cratering: Bridging the Gap Between Modeling and Observations, LPI Contrib. 1155, edited by R. Herrick, and E. Pierazzo, Abstract 8028, Lunar and Planet. Inst., Houston, Tex.
  • Kanner, L., J. F. Mustard, and A. Gendrin (2006), Assessing the limits of the Modified Gaussian Model for remote spectroscopic studies of pyroxenes on Mars, Icarus, 187, 442456, doi:10.1016/j.icarus.2006.10.025.
  • Kenkmann, T., and F. Schonian (2006), Ries and Chicxulub: Impact craters on Earth provide insights for Martian ejecta blankets, Meteorit. Planet. Sci., 41, 15871603.
  • Mangold, N., P. Allemand, P. G. Thomas, and G. Vidal (2000), Chronology of compressional deformation of Mars: Evidence of a single and global origin, Planet. Space Sci., 48, 12011211.
  • Maxwell, D. (1973), Cratering flow and crater prediction methods, Tech. Rep. 73-17, 50 pp., Phys. Int. Co., San Leandro, Calif.
  • Maxwell, D. (1977), Simple Z-model of cratering, ejection, and the overturned flap, in Impact Explosion Cratering, edited by D. Roddy, R. Pepin, and R. Merill, pp. 10031008, Pergamon, New York.
  • McSween, H. Y., et al. (2006), Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars, J. Geophys. Res., 111, E02S10, doi:10.1029/2005JE002477.
  • Melosh, H. (1989), Impact Cratering: A Geologic Process, Oxford Monogr. Geol. Geophys., vol. 11, 244 pp., Oxford Univ. Press, 244 pages, New York, USA.
  • Morris, R. V., D. Agresti, H. Lauer Jr., J. Newcomb, T. Shelfer, and A. Murali (1989), Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mössbauer studies of superparamagnetic (nanocrystalline) hematite, J. Geophys. Res., 94, 27602778.
  • Morris, R. V., D. C. Golden, J. Bell III, H. Lauer Jr., and J. Adams (1993), Pigmenting agents in Martian soils: Inferences from spectral, Mössbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9, Geochim. Cosmochim. Acta, 57, 45974609.
  • Morris, R. V., et al. (2000), Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res., 105(E1), 17571818.
  • Mouginis-Mark, P., and J. Boyce (2004), Morphology of Martian double layered ejecta craters and the speed of ejecta emplacement, paper presented at 7th Mars Crater Consortium Meeting, Northern Ariz. Univ., Flagstaff, Ariz.
  • Mouginis-Mark, P. J., and S. M. Baloga (2006), Morphology and geometry of the distal ramparts of Martian impact craters, Meteorit. Planet. Sci., 41, 14691482.
  • Mustard, J. F., S. Erard, J.-P. Bibring, J. Head III, S. Hurtrez, Y. Langevin, C. Pieters, and C. Sotin (1993), The surface of Syrtis Major: Composition of the volcanic substrate and mixing with altered dust and soil, J. Geophys. Res., 98(E2), 33873400.
  • Mustard, J. F., F. Poulet, A. Gendrin, J.-P. Bibring, Y. Langevin, B. Gondet, N. Mangold, G. Belluci, F. Altieri, and the Omega Team (2005), Olivine and pyroxene diversity in the crust of Mars, Science, 307(5515), 15951597.
  • Neumann, G. A., M. T. Zuber, M. A. Wieczorek, P. J. McGovern, F. G. Lemoine, and D. E. Smith (2004), Crustal structure of Mars from gravity and topography, J. Geophys. Res., 109, E08002, doi:10.1029/2004JE002262.
  • Pearce, S., and H. J. Melosh (1986), Terrace width variations in complex lunar craters, Geophys. Res. Lett., 13, 14191422.
  • Peet, V., M. Ramsey, and D. Crown (2006), Terrestrial volcanic and impact analogs to small Martian craters: Utilizing remote sensing and field-based datasets to analyse formational and sediment transport processes, Proc. Lunar Planet. Sci. Conf. 37th, Abstract 2323.
  • Pelkey, S., B. Jakosky, and M. T. Mellon (2001), Thermal inertia of crater-related wind streaks on Mars, J. Geophys. Res., 106(E10), 23,90923,920.
  • Pinet, P., and S. Chevrel (1990), Spectral identification of geological units on the surface of Mars related to the presence of silicates from Earth-based near-infrared telescopic charge-coupled device imaging, J. Geophys. Res., 95, 14,43514,446.
  • Pinet, P. C., et al. (2006a), Mantle rock surface mineralogy mapping in arid environment from imaging spectroscopy: The case of the Maqsad peridotitic massif in Oman and implications for the spectroscopic study of exposed mafic units on Mars, Proc. Lunar Planet. Sci. Conf. 37th, Abstarct 1346.
  • Pinet, P. C., et al. (2006b), Detection and regional mapping of mafic minerals across Syrtis Major from OMEGA/Mars Express observations in the visible-near infrared domain by means of MGM deconvolution, Eur. Community, First Europlanet Meeting, Berlin.
  • Plaut, J., et al. (2006), MARSIS subsurface sounding observations of the south polar layered deposits of Mars, Lunar Planet. Sci. Conf. 37th, Abstract 1212.
  • Poulet, F., N. Mangold, and S. Erard (2003), A new view of dark Martian regions from geomorphic and spectroscopic analysis of Syrtis Major, Astron. Astrophys., 412, L19L23, doi:10.1051/0004-6361:20031661.
  • Poulet, F., C. Gomez, J.-P. Bibring, Y. Langevin, B. Gondet, P. Pinet, G. Belluci, and J. Mustard (2007), Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps, J. Geophys. Res., 112, E08S02, doi:10.1029/2006JE002840.
  • Putzig, N., M. Mellon, K. Kretke, and A. Arvidson (2005), Global thermal inertia and surface properties of Mars from the MGM mapping mission, Icarus, 173, 325341, doi:10.1016/j.icarus.2004.08.017.
  • Ramsey, M. S. (2002), Ejecta distribution patterns at Meteor Crater, Arizona: On the applicability of lithologic end-member deconvolution for spaceborne thermal infrared data of Earth and Mars, J. Geophys. Res., 107(E8), 5059, doi:10.1029/2001JE001827.
  • Schönian, F., and T. Kenkmann (2006), Implications for ejecta blankets on Mars from the Ries and Chicxulub impact structures, paper presented at First Internation Conference on Impact Cratering in the Solar System, Eur. Space Res. and Technol. Cent., Noordwijk, Netherlands.
  • Schönian, F., R. Tagle, D. Stöffler, and T. Kenkmann (2005), Geology of southern Quintana Roo (Mexico) and the Chicxulub ejecta blanket, Proc. Lunar Planet. Sci. Conf. 36th, Abstract 2389.
  • Schönian, F., T. Salge, T. Kenkmann, D. Stöffler, A. Solar Arechalde, and L. Urrutia Fucugauchi (2006), Chicxulub ejecta blanket: The suevites of the UNAM 5 and UNAM 7 drill cores, Proc. Lunar Planet. Sci. Conf. 37th, Abstract 2229.
  • Shkuratov, Y. G. (1987), A model of spectral albedo dependence for solid surface of cosmic bodies, Kinemat. Fiz. Nebesnykh Tel, 3, 3946.
  • Shkuratov, Y. G., L. Starukhina, H. Hoffmann, and G. Arnold (1999), A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon, Icarus, 137, 235246.
  • Schultz, P. H. (1992), Atmospheric effects on ejecta emplacement, J. Geophys. Res., 97, 13,25713,302.
  • Schultz, P. H., and D. E. Gault (1979), Atmospheric effects on Martian ejecta emplacement, J. Geophys. Res., 84(B13), 76697687.
  • Stewart, S. T., and G. J. Valiant (2006), Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries, Meteorit. Planet. Sci., 41, 15091537.
  • Sunshine, J., and C. Pieters (1993), Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures unising the modified Gaussian model, J. Geophys. Res., 98(E5), 90759087.
  • Sunshine, J., C. Pieters, and S. Pratt (1990), Deconvolution of mineral bands: An improved approach, J. Geophys. Res., 95(B5), 69556966.
  • Suzuki, A., I. Kumagai, Y. Nagata, K. Kurita, and O. S. Barnouin-Jha (2007), Modes of ejecta emplacement at Martian craters from laboratory experiments of an expanding vortex ring interacting with a particle layer, Geophys. Res. Lett., 34, L05203, doi:10.1029/2006GL028372.
  • Tornabene, L., J. Moersch, H. McSween Jr., V. Hamilton, J. Piatek, K. Milam, and P. Christensen (2006), The subsurface geology of Mars: Remote sensing of impact craters using THEMIS, MOC and MOLA, Proc. Lunar Planet. Sci. Conf. 37th, Abstract 1739.
  • Watters, T., C. Leuschen, J. Plaut, G. Picardi, A. Safaeinili, S. Clifford, W. Farell, A. Ivanov, R. Philipps, and E. Stofan (2006), Evidence of buried basins in the northern lowlands of Mars from the MARSIS radar sounder, Proc. Lunar Planet. Sci. Conf. 37th, Abstract 1693.
  • Zuber, M. T., et al. (2000), Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity, Science, 287, 17881793.