SEARCH

SEARCH BY CITATION

References

  • Bish, D. L., J. W. Carey, D. T. Vaniman, and S. J. Chipera (2003), Stability of hydrous minerals on the Martian surface, Icarus, 164, 96103, doi:10.10016/s0019-1035(03)00140-4.
  • Blount, C. W., and F. W. Dickson (1973), Gypsum-anhydrite equilibria in systems CaSO4-H2O and CaSO4-NaCl-H2O, Am. Mineral., 58, 323331.
  • Carpenter, C. D., and E. R. Jette (1923), The vapor pressures of certain hydrated metal sulfates, J. Am. Chem. Soc., 45, 578590.
  • Chipera, S. J., and D. T. Vaniman (2007), Experimental stability of magnesium sulfate hydrates that maybe present on Mars, Geochim. Cosmochim. Acta, 71, 241250.
  • Chipera, S. J., et al. (2005), Experimental stability and transformation kinetics of magnesium sulfate hydrates that may be present on Mars, Lunar Planet. Sci., XXXVI, Abtsract 1497.
  • Chou, I.-M., and R. R. Seal II (2003), Determination of epsomite-hexahydrite equilibria by the humidity-buffer technique at 0.1 MPa with implications for phase equilibria in the system MgSO4-H2O, Astrobiology, 3, 619630.
  • Chou, I.-M., and R. R. Seal II (2005), Determination of goslarite-bianchite equilibria by the humidity-buffer technique at 0.1 MPa, Chem. Geol., 215, 517523.
  • Chou, I.-M., R. R. Seal II, and B. S. Hemingway (2002), Determination of melanterite-rozenite and chalcanthite-bonattite equilibria by humidity measurements at 0.1 MPa, Am. Mineral., 87, 108114.
  • Christensen, P. R., et al. (2004), Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover, Nature, 306, 17331739.
  • Clark, B. C. (1993), Geochemical components in Martian soil, Geochim. Cosmochim. Acta, 57, 45754581.
  • Clark, B. C., et al. (1976), Inorganic analyses of Martian surface samples at the Viking landing sites, Science, 194, 12831288.
  • Clark, B. C., et al. (1982), Chemical composition of Martian fines, J. Geophys. Res., 87(B12), 10,05910,067.
  • DeKock, C. W. (1986), Thermodynamic properties of selected transition metal sulfates and their hydrates, U. S. Bur. Mines Inf., 9081.
  • Feldman, W. C., et al. (2004a), Global distribution of near-surface hydrogen on Mars, J. Geophys. Res., 109, E09006, doi:10.1029/2003JE002160.
  • Feldman, W. C., et al. (2004b), Hydrated states of MgSO4 at equatorial latitudes on Mars, Geophys. Res. Lett., 31, L16702, doi:10.1029/2004GL020181.
  • Freeman, J. J., A. Wang, and B. L. Jolliff (2007), MgSO4·11H2O-powder XRD, Raman, and VIS-NIR spectroscopic characterization, Lunar Planet. Sci. Conf., XXXVIII, Abstract 1197.
  • Gellert, R., et al. (2006), Alpha Particle X-ray Spectrometer (APXS): Results from Gusev crater and calibration report, J. Geophys. Res., 111, E02S05, doi:10.1029/2005JE002555.
  • Gendrin, A., et al. (2005), Sulfates in Martian layered terrains: The OMEGA/Mars express view, Science, 307, 15871591.
  • Greenspan, L. (1977), Humidity fixed points of binary saturated aqueous solutions, J. Res. Natl. Bur. Stand. U. S., Sect. A, 81, 8996.
  • Haar, L., J. S. Gallagher, and G. S. Kell (1984), NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units, Taylor and Francis, Washington, D. C.
  • Hardie, L. A. (1967), The gypsum-anhydrite equilibrium at one atmosphere pressure, Am. Mineral., 52, 171200.
  • Hawthorne, F. C., S. V. Krivovichev, and P. C. Burns (2000), The crystal chemistry of sulfate minerals, in Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance, Rev. Mineral. Geochem., vol. 40, edited by C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, pp. 1112, Mineral. Soc. of Am., Washington, D. C.
  • Hemingway, B. S., R. R. Seal II, I-M. Chou (2002), Thermodynamic data for modeling acid-mine drainage problems. part I. Selected soluble iron-sulfate minerals, U. S. Geol. Surv. Open File Rep., 02-161.
  • Hogenboom, D. L., J. S. Kargel, J. P. Ganasan, and L. Lee (1995), Magnesium sulfate-water to 400 MPa using a novel piezometer: Densities, phase equilibria, and planetological implications, Icarus, 115, 258277.
  • Innorta, G., E. Rabbi, and L. Tomadin (1980), The gypsum-anhydrite equilibrium by solubility measurements, Geochim. Cosmochim. Acta, 44, 19311936.
  • Jambor, J. L., and R. J. Traill (1963), On rozenite and siderotil, Can. Mineral., 7, 751763.
  • King, P. L., D. T. Lescinsky, and H. W. Nesbitt (2004), The composition and evolution of primordial solutions on Mars, with application to other planetary bodies, Geochim. Cosmochim. Acta, 68, 49935008.
  • Klingelhöfer, G., et al. (2004), Jarosite and hematite at Meridiani Planum from Oppportunity's Mössbauer spectrometer, Nature, 306, 17401745.
  • Langevin, Y., et al. (2005), Sulfates in the north polar region of Mars detected by OMEGA/Mars Express, Science, 307, 15841586.
  • McCord, T. B., et al. (2001), Thermal and radiation stability of the hydrated minerals epsomite, mirabilite, and natron under Europa environmental conditions, J. Geophys. Res., 106(E2), 33113319.
  • Møller, N. (1988), The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration, Geochim. Cosmochim. Acta, 52, 821837.
  • Peterson, R. C., and R. Wang (2006), Crystal molds on Mars: Melting of a possible new mineral species to create Martian chaotic terrain, Geology, 34, 957960.
  • Plummer, L. N., et al. (1988), A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines, 310 pp., U.S. Geol. Surv. Water Resour. Invest. Rep., 88-4153.
  • Rieder, R., et al. (2004), Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Nature, 306, 17461749.
  • Robie, R. A., and B. S. Hemingway (1995), Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures, U. S. Geol. Surv. Bull. 2131, 461 pp.
  • Robson, H. L. (1927), The system MgSO4-H2O from 68 to 240°, J. Am. Chem. Soc., 49, 27722782.
  • Savijärvi, H. (1995), Mars boundary layer modeling: Diurnal moisture cycle and soil properties at the Viking Lander 1 site, Icarus, 17, 120127.
  • Vaniman, D. T., and S. J. Chipera (2006a), Transformations of Mg- and Ca-sulfate hydrates in Mars regolith, Am. Mineral., 91, 16281642.
  • Vaniman, D. T., and S. J. Chipera (2006b), Rates and modes of hydration in Mg- and Ca-sulfates on Mars (abstract), paper presented at LPI Workshop on Martian Sulfates as Recorders of Atmospheric-Fluid-Rock Interactions, sponsor, Houston, Tex., 22 – 24 Oct.
  • Vaniman, D. T., et al. (2004), Magnesium sulfate salts and the history of water on Mars, Nature, 431, 663665.
  • van't Hoff, J. H., et al (1912), Untersuchungen Über die Bildungsverhältnisse der Ozeanischen Salzablagerungen Insbesondere des Stassfurter Saltzlagers, p. 239, Akad. Verlagsgesellsch., Leipzig, Germany.
  • Wang, A., et al. (2005), Raman spectra of hydrated Mg- and Ca- sulfates and field testing the Mars Microbeam Raman Spectrometer (MMRS), Geol. Soc. Am. Abstr. Programs, 37(7), 55.
  • Wang, A., et al. (2006), Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates, Geochim. Cosmochim. Acta, 70, 61186135.