SEARCH

SEARCH BY CITATION

References

  • Andersson, P., P. Torssander, and J. Ingri (1992), Sulfur isotope ratios in sulphate and oxygen isotopes in water from a small watershed in central Sweden, Hydrobiologia, 235, 205217.
  • Åström, M. (1998), Partitioning of transition metals in oxidised and reduced zones of sulphide-bearing fine-grained sediments, Appl. Geochem., 13, 607617.
  • Åström, M., and B. Spiro (2000), Impact of isostatic uplift and ditching of sulfidic sediments on the hydrochemistry of major and trace elements and sulfur isotope ratios in streams, western Finland, Environ. Sci. Technol., 34, 11821188.
  • Åström, M., and B. Spiro (2005), Sources of acidity and metals in a stream draining acid sulphate soil, till and peat, western Finland, revealed by a hydrochemical and sulphur isotope study, Agric. Food Sci., 14, 3443.
  • Bailey, S. W., B. Mayer, and M. J. Mitchell (2004), Evidence for influence of mineral weathering on stream water sulphate in Vermont and New Hampshire, Hydrol. Processes, 18, 16391653.
  • Bishop, K. H., H. Laudon, and S. Köhler (2000), Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified, Water Resour. Res., 36, 18731884.
  • Bishop, H., J. Seibert, S. Köhler, and H. Laudon (2004), Resolving the double paradox of rapidly mobilized old water with highly variable responses in runoff chemistry, Hydrol. Processes, 18, 185189.
  • Bottrell, S., and M. Novak (1997), Sulphur isotopic study of two pristine Sphagnum in the western British Isles, J. Ecol., 85, 125132.
  • Campbell, J. L., M. J. Mitchell, and B. Mayer (2006), Isotopic assessment of NO3 and SO42− mobility during winter in two adjacent watersheds in the Adirondack Mountains, New York, J. Geophys. Res., 111, G04007, doi:10.1029/2006JG000208.
  • Canfield, D. E., and B. S. Thamrup (1994), The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur, Science, 266, 19731975.
  • Carlsson, C. (2003), Typområden på jordbruksmark: Växtnäringsstatus i Flarkbäcken 1993–2000, report, Västerbotten County, Umeå, Sweden.
  • Carlsson, E., P. Torssander, C.-M. Mörth, and M. Kusakabe (1999), Historical atmospheric deposition in a Swedish mining area traced by S isotope ratios in soils, Water Air Soil Pollut., 110, 103118.
  • Durka, W., A. Giesemann, E. D. Schulze, and H. J. Jäger (1999), Stable sulfur isotopes in forest spring waters from the Fichtelgebirge (Germany), Isot. Environ. Health Stud., 35, 237249.
  • Eimers, M. C., P. J. Dillon, and S. L. Schiff (2004), A S-isotope approach to determine the relative contribution of redox processes to net SO4 export from upland, and wetland-dominated catchments, Geochim. Cosmochim. Acta, 68, 36653674.
  • Fitzhugh, R. D., T. Furman, and A. K. Korsak (2001), Sources of stream sulphate in headwater catchments in Otter Creek Wilderness, West Virginia, USA, Hydrol. Processes, 15, 541556.
  • Giesler, R., C.-M. Mörth, E. Mellqvist, and P. Torssander (2005), The humus layer determines SO42− values in the mineral soil, Biogeochemistry, 74, 320.
  • Groscheova, H., M. Novak, and C. Alewell (2000), Changes in the δ34S ratio of pore-water sulfate in incubated Sphagnum peat, Wetlands, 20, 6269.
  • Habicht, K. S., and D. E. Canfield (1997), Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments, Geochim. Cosmochim. Acta, 61, 53515361.
  • Hesslein, R. H., M. J. Capel, and D. E. Fox (1988), Sulfur isotopes in sulphate in the inputs and outputs of a Canadian Shield water shed, Biogeochemistry, 5, 263273.
  • Ingri, J., P. Torssander, P. S. Andersson, C.-M. Mörth, and M. Kusakabe (1997), Hydrogeochemistry of sulfur isotopes in the Kalix River catchment, northern Sweden, Appl. Geochem., 12, 483496.
  • Kester, C. L., J. S. Baron, and J. T. Turk (2003), Isotopic study of sulfate sources and residence times in a subalpine watershed, Environ. Geol., 43, 606613.
  • Knöller, K., R. Trettin, and G. Strauch (2005), Sulphur cycling in the drinking water catchment area of Torgau-Mockritz (Germany): Insights from hydrochemical and stable isotope investigations, Hydrol. Processes, 19, 34453465.
  • Krouse, H. R., and V. A. Grinenko (1991), Stable isotopes: Natural and Anthropogenic Sulphur in the Environment, SCOPE, vol. 43, John Wiley, New York.
  • Laudon, H., and K. H. Bishop (2002a), The rapid and extensive recovery from episodic acidification in northern Sweden due to declines in SO42− deposition, Geophys. Res. Lett., 29(12), 1594, doi:10.1029/2001GL014211.
  • Laudon, H., and K. Bishop (2002b), Episodic stream water pH decline during autumn storms following a summer drought in northern Sweden, Hydrol. Processes, 16, 17251733.
  • Laudon, H., O. Westling, and K. Bishop (2000), Cause of pH decline in stream water during spring melt runoff in northern Sweden, Can. J. Fish. Aquat. Sci., 57, 18881900.
  • Laudon, H., O. Westling, S. Löfgren, and K. Bishop (2001), Modelling preindustrial ANC and pH during spring flood in northern Sweden, Biogeochemistry, 54, 171195.
  • Laudon, H., S. Köhler, and I. Buffam (2004a), Seasonal dependency in DOC export from seven boreal catchments in northern Sweden, Aquat. Sci., 66, 223230.
  • Laudon, H., P. J. Dillon, M. C. Eimers, R. G. Semkin, and D. S. Jeffries (2004b), Drought induced episodic acidification in central Ontario, Environ. Sci. Technol., 38, 60096015.
  • Laudon, H., S. Köhler, J. Seibert, and K. Bishop (2004c), Hydrological flow paths during the snowmelt: Congruence between hydrometric measurements and oxygen 18 in snow melt, soil water, and runoff, Water Resour. Res., 40(3), W03102, doi:10.1029/2003WR002455.
  • Mndernack, K. W., L. Lynch, H. R. Krouse, and M. D. Morgan (2000), Sulfur cycling wetland peat of the New Jersey pinelands and its effect on stream water chemistry, Geochim. Cosmochim. Acta, 64, 39493964.
  • Mörth, C.-M., and P. Torssander (1995), Sulfur and oxygen-isotope ratios in sulfate during an acidification reversal study at Lake Gårdsjön, western Sweden, Water Air Soil Pollut., 79, 261278.
  • Mörth, C.-M., P. Torssander, M. Kusakabe, and H. Hultberg (1999), Sulfur isotope values in a forested catchment over four years: Evidence for oxidation and reduction processes, Biogeochemistry, 44, 5171.
  • Mörth, C.-M., P. Torssander, O. J. Kjønaas, A. O. Stuanes, F. Moldan, and R. Giesler (2005), Mineralization of organic sulfur delays recovery from anthropogenic acidification, Environ. Sci. Technol., 39, 52345240.
  • Nakai, N., and M. L. Jensen (1964), The kinetic isotope effect in the bacterial reduction and oxidation of sulphur, Geochim. Cosmochim. Acta, 28, 18931912.
  • Norman, A. L., A. Giesemann, H. R. Krouse, and H. J. Jäger (2002), Sulphur isotope fractionation during sulphur mineralization: Results of an incubation-extraction experiment with a black forest soil, Soil Biol. Biochem., 34, 14251438.
  • Novák, M., F. Buzek, A. F. Harrison, E. Prechova, I. Jackova, and D. Fottova (2003), Similarity between C, N and S stable isotope profiles in European spruce forest soils: Implications for the use of δ34S as a tracer, Appl. Geochem., 18, 765779.
  • Novák, M., J. W. Kirchner, D. Fottová, E. Prechová, I. Jacková, P. Krám, and J. Hruska (2005), Isotopic evidence for processes of sulfur retention/release in 13 forested catchments spanning a strong pollution gradient (Czech Republic, central Europe), Global Biogeochem. Cycles, 19, GB4012, doi:10.1029/2004GB002396.
  • Öborn, I. (1989), Properties and classification of some acid sulfate soils in Sweden, Geoderma, 45, 197219.
  • Prechtel, A., et al. (2001), Response to sulfur dynamics in European catchments to decreasing sulphate deposition, Hydrol. Earth Syst. Sci., 5, 311325.
  • Rees, C. E., W. J. Jenkins, and J. Monster (1978), The sulphur isotopic composition of ocean water sulphate, Geochim. Cosmochim. Acta, 42, 377381.
  • Schiff, S. L., J. Spoelstra, R. G. Semkin, and D. S. Jeffries (2005), Drought induced pulses of SO42− from a Canadian shield wetland: Use of δ34S and δ18O in SO42− to determine sources of sulfur, Appl. Geochem., 20, 691700.
  • Shanley, J. B., B. Mayer, M. J. Mitchell, R. L. Michel, S. W. Bailey, and C. Kendall (2005), Tracing sources of streamwater sulfate during snowmelt using S and O isotope ratios of sulfate and S-35 activity, Biogeochemistry, 76, 161185.
  • Stam, A. C., M. J. Mitchell, H. R. Krouse, and J. S. Kahl (1992), Stable sulphur isotopes of sulphate in precipitation and stream solutions in a northern hardwood watershed, Water Resour. Res., 28, 231236.
  • Stoddard, J. L., et al. (1999), Regional trends in aquatic recovery from acidification in North America and Europe, Nature, 401, 575578.
  • Toran, L., and R. F. Harris (1989), Interpretation of sulfur and oxygen isotopes in biological and a biological sulfide oxidation, Geochim. Cosmochim. Acta, 53, 23412348.
  • Torssander, P. (1996), Identification of sulfur sources in surface waters in Västerbotten County, report, Swed. Environ. Prot. Agency, Stockholm.
  • Torssander, P., C.-M. Mörth, and R. Kumpulainen (2006), Chemistry and sulfur isotope investigation of industrial wastewater contamination into groundwater aquifers, Piteå County, N. Sweden, J. Geochem. Explor., 88, 6467.
  • VanStempvoort, D. R., E. J. Reardon, and P. Fritz (1990), Fractionation of sulfur and oxygen in sulfate by soil sorption, Geochim. Cosmochim. Acta, 54, 28172826.
  • Zhang, Y. M., M. J. Mitchell, M. Christ, G. E. Likens, and H. R. Krouse (1998), Stable sulfur isotopic biogeochemistry of the Hubbard Brook Experimental Forest, New Hampshire, Biogeochemistry, 41, 259275.