SEARCH

SEARCH BY CITATION

References

  • Amundsen, R., L. Stern, T. Baisden, and Y. Wang (1998), The isotopic composition of soil and soil-respired CO2, Geoderma, 82, 83114.
  • Andrews, J. A., K. G. Harrison, M. Roser, and W. H. Schlesinger (1999), Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE), Soil Sci. Soc. Am. J., 63, 14291435.
  • Bousquet, P. (1999a), Inverse modeling of annual atmospheric CO2 sources and sinks: 1. Method and control inversion, J. Geophys. Res., 104(D121), 26,16126,178.
  • Bousquet, P. (1999b), Inverse modeling of annual atmospheric CO2 sources and sinks: 2. Sensitivity study, J. Geophys. Res., 104(D121), 26,17926,193.
  • Bowling, D. R., N. G. McDowell, B. J. Bond, B. E. Law, and J. R. Ehleringer (2002), 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit, Oecologia, 131, 113124.
  • Bowling, D. R., D. E. Pataki, and J. R. Ehleringer (2003), Critical evaluation of micrometeorological methods for measuring ecosystem–atmosphere isotopic exchange of CO2, Agric. For. Meteorol., 3118, 121.
  • Buchmann, N. (2000), Biotic and abiotic factors controlling soil respiration rates in Picea abies stands, Soil Biol. Biochem., 32, 16251635.
  • Buchmann, N., J.-M. Guehl, T. S. Barigah, and J. R. Ehleringer (1997), Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana), Oecologia, 110, 120131.
  • Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey (1995a), A large northern hemispheric terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2, Science, 269, 10981102.
  • Ciais, P., P. P. Tans, J. W. C. White, M. Trolier, R. J. Francey, J. A. Berry, D. A. Randall, P. J. Sellers, J. G. Collatz, and D. S. Shimel (1995b), Partitioning of ocean and land uptake of CO2 inferred by δ13C measurements from the NOAA/CMDL global air sampling network, J. Geophys. Res., 100(D3), 50515070.
  • Ciais, P., P. Friedlingstein, D. S. Shimel, and P. P. Tans (1999), A global calculation of the δ13C of soil respired carbon: Implications for the biospheric uptake of anthropogenic CO2, Global Biogeochem. Cycles, 13(2), 519530.
  • Ciais, P., M. Cuntz, M. Scholze, F. Mouillot, P. Peylin, and V. Gitz (2005), Remarks on the use of 13C and 18O isotopes in atmospheric CO2 to quantify biospheric carbon fluxes, in Stable Isotopes and Biosphere–Atmosphere Interactions: Processes and Biological Controls, edited by L. B. Flanagan, J. R. Ehleringer, and D. E. Pataki, pp. 235267, Elsevier, San Diego, Calif.
  • Cisneros-Dozal, L. M., S. Trumbore, and P. J. Hanson (2006), Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon tracer, Global Change Biol., 12, 194204.
  • Davidson, E. A., E. Belk, and R. D. Boone (1998), Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Global Change Biol., 4, 217227.
  • Davidson, E. A., K. Savage, L. V. Verchot, and R. Navarro (2002), Minimizing artifacts and biases in chamber-based measurements of soil respiration, Agric. For. Meteorol., 113, 2137.
  • Ehleringer, J. R., N. Buchmann, and L. B. Flanagan (2000), Carbon isotope ratios in belowground processes, Ecol. Appl., 10, 412422.
  • Ekblad, A., and P. Högberg (2001), Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration, Oecologia, 127, 305308.
  • Ekblad, A., B. Boström, A. Holm, and D. Comstedt (2005), Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions, Oecologia, 143, 136142.
  • Fang, C., and J. B. Moncrieff (2001), The dependence of soil CO2 efflux on temperature, Soil Biol. Biochem., 33, 155165.
  • Fang, C., P. Smith, J. B. Moncrieff, and J. U. Smith (2005), Similar response of labile and resistant soil organic matter pools to changes in temperature, Nature, 433, 5759.
  • Flanagan, L. B., J. R. Brooks, G. T. Varney, S. C. Berry, and J. R. Ehleringer (1996), Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystem, Global Biogeochem. Cycles, 10(4), 629640.
  • Folorunso, O. A., and D. E. Rolston (1984), Spatial variability of field-measured denitrification gas fluxes and soil properties, Soil Sci. Soc. Am. J., 48, 12131219.
  • Francey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and M. Trolier (1995), Changes in oceanic and terrestrial carbon uptake since 1982, Nature, 373, 326330.
  • Friedli, H., and U. Siegenthaler (1988), Influence of N2O on isotopic analyses in CO2 and mass-spectrometric determination of N2O in air samples, Tellus, 40B, 129133.
  • Fung, I. Y., et al. (1997), Carbon 13 exchanges between the atmosphere and biosphere, Global Biogeochem. Cycles, 11(4), 507533.
  • Gaumont-Guay, D., T. A. Black, T. J. Griffis, A. G. Barr, R. S. Jassal, and Z. Nesic (2006), Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand, Agric. For. Meteorol., 140, 220235.
  • Giardina, C. P., and M. G. Ryan (2000), Evidence that decomposition rates of organic matter in mineral soil do not vary with temperature, Nature, 404, 858861.
  • Gleixner, G. (2005), Stable isotope composition of soil organic matter, in Stable Isotopes and Biosphere–Atmosphere Interactions: Processes and Biological Controls, edited by L. B. Flanagan, J. R. Ehleringer, and D. E. Pataki, pp. 2946, Elsevier, San Diego, Calif.
  • Hanson, P. J., N. T. Edwards, C. T. Garten, and J. A. Andrews (2000), Separating root and soil microbial contributions to soil respiration: A review of methods and observations, Biogeochemistry, 48, 115146.
  • Heimann, M., and C. D. Keeling (1989), A three-dimensional model of atmospheric CO2 transport based on observed wind: 2. Model description and simulated tracer experiments, in Aspects of Climate Variability in the Pacific and the Western Americas, edited by D. H. Peterson, pp. 237276, AGU, Washington, D. C.,
  • Hirata, R., T. Hirano, N. Saigusa, Y. Fujinuma, K. Inukai, Y. Kitamori, Y. Takahashi, and S. Yamamoto (2007), Seasonal and interannual variations in carbon dioxide exchange of a temperate larch forest, Agric. For. Meteorol., 147, 110124.
  • Högberg, P., A. Ekblad, A. Nordgren, A. H. Plamboeck, A. Ohlsson, B. Bhupinderpal-Singh, and M. N. Högberg (2005), Factors determining the 13C abundance of soil-respired CO2 in boreal forests, in Stable Isotopes and Biosphere–Atmosphere Interactions: Processes and Biological Controls, edited by L. B. Flanagan, J. R. Ehleringer, and D. E. Pataki, pp. 4768, Elsevier, San Diego, Calif.
  • Keeling, C. D. (1958), The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, Geochim. Cosmochim. Acta, 13, 322334.
  • Keeling, C. D. (1995), Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature, 375, 666670.
  • Kuzyakov, Y. (2006), Sources of CO2 efflux from soil and review of partitioning methods, Soil Biol. Biochem., 38, 425448.
  • Liang, N., G. Inoue, and Y. Fujinuma (2003), A multichannel automated chamber system for continuous measurement of forest soil CO2 efflux, Tree Physiol., 23, 825832.
  • Liang, N., T. Nakadai, T. Hirano, L. Qu, T. Koike, Y. Fujinuma, and G. Inoue (2004), In-situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest, Agric. For. Meteorol., 123, 97117.
  • Liski, J., H. Ilvesniemi, A. Mäkelä, and C. J. Westman (1999), CO2 emissions from soil in response to climatic warming are overestimated- the decomposition of old soil organic matter is tolerant of temperature, Ambio, 28, 171174.
  • McDowell, N. G., D. R. Bowling, B. J. Bond, J. Irvine, B. E. Law, P. Anthoni, and J. R. Ehleringer (2004), Response of the carbon isotopic content of ecosystem, leaf, and soil respiration to meteorological and physiological driving factors in a Pinus ponderosa ecosystem, Global Biogeochem. Cycles, 18, GB1013, doi:10.1029/2003GB002049.
  • Mortazavi, B., J. L. Prater, and J. P. Chanton (2004), A field-based method for simultaneous measurements of the δ18O and δ13C of soil CO2 efflux, Biogeosciences, 1, 19.
  • Ohlsson, K. E., A. Ohlsson, B. Bhupinderpal-Singh, S. Holm, A. Nordgren, L. Lövdahla, and P. Högberg (2005), Uncertainties in static closed chamber measurements of the carbon isotopic ratio of soil-respired CO2, Soil Biol. Biochem., 37, 22732276.
  • Pataki, D. E., J. R. Ehleringer, L. B. Flanagan, D. Yakir, D. R. Bowling, C. J. Still, N. Buchmann, J. O. Kaplan, and J. A. Berry (2003), The application and interpretation of Keeling plots in terrestrial carbon cycle research, Global Biogeochem. Cycles, 17(1), 1022, doi:10.1029/2001GB001850.
  • Pendall, E., J. Y. King, A. R. Moser, J. Morgan, and D. M. Högberg (2005), Stable isotope constraints on net ecosystem production under elevated CO2, in Stable Isotopes and Biosphere–Atmosphere Interactions: Processes and Biological Controls, edited by L. B. Flanagan, J. R. Ehleringer, and D. E. Pataki, pp. 182198, Elsevier, San Diego, Calif.
  • Randerson, J. T., M. V. Thompson, C. M. Malmström, C. B. Field, and I. Y. Fung (1996), Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO2, Global Biogeochem. Cycles, 10, 585602.
  • Randerson, J. T., et al. (2002), Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere–atmosphere model, Global Biogeochem. Cycles, 16(3), 1028, doi:10.1029/2001GB001435.
  • Rayner, P. J., I. G. Enting, R. J. Francey, and R. Langenfelds (1999), Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations, Tellus, 51B, 213232.
  • Reichstein, M. J.-A., E. Subke, A. C. Angeli, and J. D. Tenhunen (2005), Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Global Change Biol., 11, 17541767.
  • Scholze, M., J. O. Kaplan, W. Knorr, and M. Heimann (2003), Climate and interannual variability of the atmosphere-biosphere 13CO2 flux, Geophys. Res. Lett., 30(2), 1097, doi:10.1029/2002GL015631.
  • Søe, A. R. B., and N. Buchmann (2005), Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest, Tree Physiol., 25, 14271436.
  • Takahashi, Y., and N. Liang (2008), Development of chamber-based sampling technique for determination of carbon stable isotope ratio of soil respired CO2 and evaluation of influence of CO2 enrichment in chamber headspace, Geochem. J., 41, 493500.
  • Tang, J., D. D. Baldocchi, Y. Qi, and L. Xu (2003), Assessing soil CO2 efflux using continuous measurements of CO2 within the soil profile with small solid-state sensors, Agric. For. Meteorol., 118, 207220.
  • Tang, J., D. D. Baldocchi, and L. Xu (2005), Tree photosynthesis modulates soil respiration on a diurnal timescale, Global Change Biol., 11, 12981304.
  • Tans, P. P., J. A. Berry, and R. F. Keeling (1993), Oceanic 13C/12C observations: A new window on ocean CO2 uptake, Global Biogeochem. Cycles, 7, 353368.
  • Vaughn, B. H., J. Miller, D. F. Ferretti, and J. W. C. White (2004), Stable isotope measurements of atmospheric CO2 and CH4, in Handbook of Stable Isotope Analytical Techniques, edited by P. A. de Groot, pp. 272304, Elsevier, Amsterdam.
  • Xu, M., and Y. Qi (2001), Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California, Global Change Biol., 7, 667677.
  • Zobitz, J. M., J. P. Keener, H. Schnyder, and D. R. Bowling (2006), Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research, Agric. For. Meteorol., 136, 5675.