SEARCH

SEARCH BY CITATION

References

  • Astrakhantcev, G. (1978), Method of fictitious domains for a second-orderelliptic equation with natural boundary conditions, USSR Comput. Math. Math. Phys., 18, 114121.
  • Bennethum, L., and T. Weinstein (2004), Three pressures in porous media, Transp. Porous Media, 54(1), 134.
  • Beskow, G. (1935), Soil Freezing and Frost Heaving With Special Application to Roads and Railroads, C, no. 375, Year Book no. 3, Swedish Geol. Soc., Technol. Inst., Northwestern Univ., translated by J. O. Osterberg.
  • Blanchard, D., and M. Fremond (1982), Cryogenic suction in soils, in Proceedings of the Third International Symposium on Ground Freezing, vol. 1, pp. 233238, Hanover, N. H.
  • Buzbee, B., F. Dorr, J. George, and G. Golub (1971), The direct solution of the discrete poisson equation on irregular regions, SIAM J. Numer. Anal., 8, 722736.
  • Coussy, O. (2005), Poromechanics of freezing materials, J. Mech. Phys. Solids, 53, 16891718.
  • Dash, J., H. Fu, and J. Wettlaufer (1995), The premelting of ice and its environmental consequences, Rep. Prog. Phys., 58, 115167.
  • de Vries, D. (1963), Physics of the plant environment, in Thermal Properties of Soils, edited by W. R. van Wijk, pp. 210235, Wiley, New York.
  • Everett, D. (1961), The thermodynamics of frost damage to porous solid, Trans. Faraday Soc., 57, 15411551.
  • Fowler, A. (1989), Secondary frost heave in freezing soils, SIAMJ. Appl. Math., 49, 9911008.
  • Fremond, M., and M. Mikkola (1991), Thermomechanical modeling of freezing soil, in Proceedings of the 6th International Symposium on Ground Freezing, edited by W. C. Yu, pp. 1724, Balkema, Rotterdam.
  • Glowinski, R., T.-W. Pan, and J. Periaux (1994), Fictitious domain method for dirichlet problems and applications, Comput. Methods Appl. Mech. Eng., 111, 283303.
  • Graham, J., and V. Au (1985), Effects of freeze-thaw and softening on a natural clay at low stresses, Can. Geotech. J., 22(1), 6978.
  • Hartikainen, J., and M. Mikkola (1997), General thermomechanical model of freezing soil with numerical applications, in Ground Freezing, pp. 101105, Balkema, Rotterdam.
  • Hobbs, P. (1974), Ice Physics, Clarendon Press, Oxford.
  • Huyghe, J., R. V. Loon, and F. Baaijens (2004), Fluid-solid mixtures and electrochemomechanics: the simplicity of lagrangian mixture theory, Comput. Appl. Math., 23(2–3), 235258.
  • Jussila, P. (2006), Thermodynamics of porous media - I: thermohydraulic model for compacted bentonite, Transp. Porous Media, 62, 81107.
  • Kade, A., and D. Walker (2008), Experimental alternation of vegetation on nonsorted circles: effects on cryogenic activity and implications for climate change in the Arctic, Arct. Antarct. Alp. Res., in press.
  • Kade, A., D. Walker, and M. Raynolds (2005), Plant communities and soils incryoturbated tundra along a bioclimate gradient in the Low Arctic, Alaska, Phytocoenologia, 35, 761820.
  • Kade, A., V. Romanovsky, and D. Walker (2006), The n-factor of nonsorted circles along a climate gradient in arctic Alaska, Permafrost Periglacial Processes, 17, 279289.
  • Konrad, J., and C. Duquennoi (1993), A model for water transport and ice lensing in freezing soils, Water Resour, 29(9), 31093124.
  • Konrad, J., and N. Morgenstern (1981), The segregation potential of a frozen soil, Can. Geotech. J., 18, 482491.
  • Kuznetsov, Y. (2000), The fictitious domain method, in Proceedings of the Annual International Meeting on Domain Decomposition Methods, edited by M. Garbey, Lyon.
  • Landau, L., and E. Lifshitz (1969), Statistical Physics, Addison-Wesley, Boston, Mass.
  • Li, N., F. Chen, B. Su, and G. Cheng (2002), Theoretical frame of the saturated freezing soil, Cold Reg. Sci. Technol., 35, 7380.
  • Litvan, G. (1972), Phase transitions of absorbates iv. mechanism of frost hardened cement paste, J. Am. Ceram. Soc., 55(1), 3842.
  • Marchuk, G., Y. Kuznetsov, and A. Matsokin (1986), Fictitious domain and domain decomposition methods, Sov. J. Numer. Anal. Math. Model., 1, 182.
  • Michalowskin, R., and M. Zhu (2006), Frost heave modeling using porosity rate function, Int. J. Numer. Anal. Methods Geomech., 30, 703722.
  • Mikkola, M., and J. Hartikainen (2001), Mathematical model of soil freezing and its numerical application, Int. J. Numer. Methods Eng., 52, 543557.
  • O'Neill, K., and R. Miller (1985), Exploration of a rigid ice model of frost heave, Water Resour. Res., 21, 281296.
  • Penner, E. (1959), The mechanism of frost heave in soils, Highway Res. Board Bull., 225, 122.
  • Peterson, R., and W. Krantz (2003), A mechanism for differential frost heave and its implications for patterned ground formation, J. Glaciol., 49(164), 6980.
  • Powers, T., and R. Helmuth (1953), Theory of volume changes in hardened portland cement paste during freezing, in Proceedings of the Highway Research Board, vol. 32, pp. 285297, Washington, D. C.,
  • Qi, J., P. Vermeer, and G. Cheng (2006), A review of the influence of freeze-thaw cycles on soil geotechnical properties, Permafrost Periglacial Processes, 17, 245252.
  • Ramiere, I., P. Angot, and M. Belliard (2005), Fictitious domain methods to solve convection-diffusion problems with general boundary conditions, in Proceedings of 17th Computational Fluid Dynamics Conference, pp. 20054709, AIAA, Toronto.
  • Rempel, A., J. Wettlaufer, and M. Worster (2004), Premelting dynamics in a continuum model of frost heave, J. Fluid Mech., 498, 227244.
  • Samarskii, A., and P. Vabishchevich (1996), Computational Heat Transfer, Mathematical Modeling, vol. 1, Wiley, New York.
  • Saulev, V. (1963), On solution of some boundary value problems on high performance computers by fictitious domain method (in Russian), Siberian Math. J., 4(4), 912925.
  • Sergueev, D., G. Tipenko, V. Romanovsky, and N. Romanovsky (2003), Mountain permafrost thickness evolution under influence of long-term climate fluctuations (results of numerical simulation), in Proceedings of the Eighth International Conference on Permafrost, vol. 2, edited by M. Phillips, S. Springman, and L. Arenson, pp. 10171021.
  • Taber, S. (1918), Ice forming in clays will lift surface weights, Eng. News Record, 80(6), 262263.
  • Taber, S. (1929), Frost heaving, J. Geol., 37, 428461.
  • Taber, S. (1930), The mechanics of frost heaving, J. Geol., 38(4), 303317.
  • Tsytovich, N. (1975), Mechanics of Frozen Ground, Scripta.
  • van Everdingen, R. (2002), Multi-Language Glossary of Permafrost and Related Ground-Ice Terms, Natl. Snow and Ice Data Cent./World Data Cent. for Glaciol., Boulder, Colo.
  • Viklander, P., and D. Eigenbrod (2000), Stone movements and permeability changes in till caused by freezing and thawing, Cold Reg. Sci. Technol., 31(2), 151162.
  • Walker, D., et al. (2004), Frost-boil ecosystems: Complex interactions between landforms, soils, vegetation and climate, Permafrost Periglacial Processes, 15, 171188.
  • Walker, D., et al. (2008), Arctic patterned-ground ecosystems: A synthesis of studies along a North American Arctic Transect, J. Geophys. Res., doi:10.1029/2007JG000504, in press.
  • Watanabe, K., and M. Mizoguchi (2000), Ice configuration near a growing ice lens in a freezing porous medium consisting of micro glass particles, Crystal Growth, J., 213, 135140.
  • Wettlaufer, J., and M. Worster (1995), Dynamics of premelted films: Frost heave in a capillary, Phys. Rev. E, 51, 46794689.
  • Williams, P. (1982), The Surface of the Earth: An Introduction to Geotechnical Science, Longman, London.
  • Williams, P., and M. Smith (1989), The Frozen Earth, Cambridge Univ. Press, Cambridge.
  • Zienkiewicz, O., and R. Taylor (1991), The Finite Element Method, vol. 1, McGraw-Hill, London.