SEARCH

SEARCH BY CITATION

References

  • Bazylinski, D. A., et al. (1995), Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium, Appl. Environ. Microbiol., 61, 32323239.
  • Blakemore, R. P. (1982), Magnetotactic bacteria, Annu. Rev. Microbiol., 36, 217238.
  • Bralower, T. J., et al. (1997), High-resolution records of the late Paleocene Thermal Maximum and circum-Caribbean volcanism: Is there a causal link? Geology, 1997, 963966.
  • Bujak, J. P., and H. Brinkhuis (1998), Global warming and dinocyst changes across the Paleocene-Eocene epoch boundary, in Late Paleocene–Early Eocene, edited by M. P. Aubry, and W. A. Berggren, pp. 277295, Columbia Univ. Press, New York.
  • Butler, R. F., and S. K. Banerjee (1975), Theoretical single-domain grain size range in magnetite and titanomagnetite, J. Geophys. Res., 80, 40494058.
  • Crouch, E. M., et al. (2001), Global dinoflangellate event associated with the late Paleocene Thermal Maximum, Geology, 29, 315318.
  • Day, R., M. Fuller, and V. A. Schmidt (1977), Hystersis properties of titanomagnetites: Grain size and composition dependence, Phys. Earth Planet. Inter., 13, 260267.
  • Dickens, G. R., and J. M. Francis (2003), Comment on “A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion” by D.V. Kent et al. Earth Planet. Sci. Lett., 217, 197200.
  • Dickens, G. R., J. R. O'Neil, D. K. Rea, and R. M. Owen (1995), Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 259262.
  • Dunlop, D. J. (2002a), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107(B3), 2056, doi:10.1029/2001JB000486.
  • Dunlop, D. J. (2002b), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils, J. Geophys. Res., 107(B3), 2057, doi:10.1029/2001JB000487.
  • Farley, K. A., and S. F. Eltgroth (2003), An alternative age model for the Paleocene-Eocene thermal maximum using extraterrestrial 3He, Earth Planet. Sci. Lett., 208, 135148.
  • Finney, B. P., M. W. Lyle, and G. R. Heath (1988), Sedimentation at Manop site H (eastern equatorial Pacific) over the past 400,000 years: Climatically induced redox variations and their effects on transition metal cycling, Paleoceanography, 3, 169189.
  • Frankel, R. B. (1984), Magnetic guidance of organism, Annu. Rev. Biophys. Bioeng., 13, 85103.
  • Gee, J., and D. V. Kent (1995), Magnetic hysteresis in young mid-ocean ridge basalts: Dominant cubic anisotropy? Geophys. Res. Lett., 22, 551554.
  • Gibbs, S. J., T. J. Bralower, P. R. Bown, J. C. Zachos, and L. M. Bybell (2006), Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients, Geology, 34, 233236.
  • Gibson, T. G., L. M. Bybell, and J. P. Owens (1993), Latest Paleocene lithologic and biotic events in neritic deposits of southwestern New Jersey, Paleoceanography, 8, 495514.
  • Gibson, T. G., L. M. Bybell, and D. B. Mason (2000), Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin, Sediment. Geol., 134, 6592.
  • Hesse, P. P. (1994), Evidence for bacterial palaeoecological origin of mineral magnetic cycles in oxic and sub-oxic Tasman Sea sediments, Mar. Geol., 117, 117.
  • Kaiho, K., et al. (1996), Latest Paleocene benthic foraminiferal extinction and environmental changes at Tawanui, New Zealand, Paleoceanography, 11, 447465.
  • Karlin, R. (1990a), Magnetic mineral diagenesis in suboxic sediments at Bettis Site W-N, NE Pacific Ocean, J. Geophys. Res., 95, 44214436.
  • Karlin, R. (1990b), Magnetite diagensis in marine sediments from the Oregon continental margin, J. Geophys. Res., 95, 44054419.
  • Katz, M. E., B. S. Cramer, G. S. Mountain, S. Katz, and K. G. Miller (2001), Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? Paleoceanography, 16, 549560.
  • Kelly, D. C., J. C. Zachos, T. J. Bralower, and S. A. Schellenberg (2005), Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene-Eocene thermal maximum, Paleoceanography, 20, PA4023, doi:10.1029/2005PA001163.
  • Kennett, J. P., and L. D. Stott (1991), Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene, Nature, 353, 225229.
  • Kent, D. V., et al. (2003), A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion, Earth Planet. Sci. Lett., 211, 1326.
  • Kim, B. Y., K. P. Kodama, and R. E. Moeller (2005), Bacterial magnetite produced in water column dominates lake sediment mineral magnetism: Lake Ely, USA, Geophys. J. Int., 163, 2637.
  • Kirschvink, J. L. (1983), Biogenic ferrimagnetism: A new biomagnetism, in Biomagnetism: An Interdisciplinary Approach, NATO ASI Ser. A, edited by S. J. Williamson et al., pp. 501531, Plenum, New York.
  • Koch, P. L., J. Zachos, and P. D. Gingerich (1992), Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary, Nature, 258, 319322.
  • Kopp, R. E., T. Raub, D. Schumann, H. Vali, A. Smirnov, and J. L. Kirschvink (2007), Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States, Paleoceanography, 22, PA4103, doi:10.1029/2007PA001473.
  • Lippert, P. C., J. Zachos, S. Bohaty, and T. Quattlebaum (2004), Rock magnetic properties across Paleocene-Eocene boundary sediments from the North Atlantic, South Atlantic, and eastern Pacific, Eos Trans AGU, 85(47), Fall Meet. Suppl., Abstract GP31B-0840.
  • Lourens, L. J., et al. (2005), Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 10831087.
  • Maas, M. C., M. R. L. Anthony, P. D. Gingerich, G. F. Gunnell, and D. K. Krause (1995), Mammalian generic diversity and turnover in the late Paleocene and early Eocene of the Bighorn and Crazy Mountains Basins, Wyoming and Montana, Palaeogeogr. Palaeoclimatol. Palaeoecol., 115, 181207.
  • Martini, E. (1971), Standard Tertiary and Quaternary calcareous nannoplankton zonation, in Second Planktonic Conference, p. 1390, edited by A. Farinacci, Tecnoscienza Roma, Rome.
  • Miller, K. G. (1997), Coastal plain drilling and the New Jersey sea-level transect, Proc. Ocean Drill. Program Sci. Results, 150X, 312.
  • Miller, K. G., et al. (1998), Bass River Site, Proc. Ocean Drill. Program Initial Rep., 174AX, 543, doi:10.2973/odp.proc.ir.174ax.101.1998.
  • Moskowitz, B. M., R. B. Frankel, and D. A. Bazylinski (1993), Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283300.
  • Peterman, H., and U. Bleil (1993), Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments, Earth Planet. Sci. Lett., 117, 223228.
  • Ravizza, G., R. D. Norris, J. Blusztajn, and M. P. Aubry (2001), An osmium isotope excursion associated with the late Paleocene Thermal Maximum: Evidence of intensified chemical weathering, Paleoceanography, 16, 155163.
  • Rochette, P., G. Fillion, J. L. Mattei, and M. J. Dekkers (1990), Magnetic transition at 30–34 Kelvin in pyrrhotite: Insight into a widespread occurrence of this mineral in rocks, Earth Planet. Sci. Lett., 98, 319328.
  • Schmitz, B., and V. Pujalte (2007), Abrupt increase in seasonal extreme precipitation at the Paleocene-Eocene boundary, Geology, 35, 215218.
  • Schmitz, B., V. Pujalte, and K. Nunez-Betelu (2001), Climate and sea-level perturbations during the Incipient Eocene Thermal Maximum: Evidence from siliciclastic units in the Basque Basin (Ermua, Zumaia, and Trabakua Pass), northern Spain, Palaeogeogr. Palaeoclimatol. Palaeoecol., 165, 299320.
  • Schmitz, B., et al. (2004), Basaltic explosive volcanism, but no comet impact, at the Paleocene-Eocene boundary: High-resolution chemical and isotopic records from Egypt, Spain and Denmark, Earth Planet. Sci. Lett., 225, 117.
  • Simmons, S. L., S. M. Sievert, R. B. Frankel, D. A. Bazylinski, and K. J. Edwards (2004), Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond, Appl. Environ. Microbiol., 70, 62306239.
  • Smirnov, A. V., and J. A. Tarduno (2000), Low-temperature magnetic properties of pelagic sediments (Ocean Drilling Program Site 805C): Tracers of maghemitization and magnetic mineral reduction, J. Geophys. Res., 105, 16,45716,471.
  • Sparks, N. H. C., et al. (1990), Structure and morphology of magnetite anaerobically-produced by a marine bacterium and a dissimilatory iron-reducing bacterium, Earth Planet. Sci. Lett., 98, 1422.
  • Speijer, R. P., G. J. van der Zwaan, and B. Schmitz (1996), The impact of Paleocene/Eocene boundary events on middle neritic foraminiferal assemblages from Egypt, Mar. Micropaleontol., 28, 99132.
  • Stoltz, J. F. (1992), Magnetotactic bacteria: Biomineralization, ecology, sediment magnetism, environmental indicator, in Biomineralization Processes of Iron and Manganese: Modern and Ancient Environments, edited by H. W. C. Skinner, and R. W. Fitzpatrick, pp. 135145, Catena, Cremlingen-Destedt, Germany.
  • Storey, M., R. A. Duncan, and C. C. Swisher III (2007), Paleocene-Eocene Thermal Maximum and the opening of the northeast Atlantic, Science, 316, 587589.
  • Svensen, H., et al. (2004), Release of methane from a volcanic basin as a mechanism for initial Eocene global warming, Nature, 429, 542545.
  • Tarduno, J. A., and S. L. Wilkison (1996), Non-steady state magnetic mineral reduction, chemical lock-in, and delayed remanence acquisition in pelagic sediments, Earth Planet. Sci. Lett., 144, 315326.
  • Thomas, E., and N. J. Shackleton (1996), The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies, in Correlation of the Early Paleogene in Northwest Europe, edited by W. W. O. B. Knox, R. M. Corfield, and R. E. Dunary, Geol. Soc. Spec. Publ., 101, 401441.
  • Van Sickel, W. A., M. A. Kominz, K. G. Miller, and J. V. Browning (2004), Late Cretaceous and Cenozoic sea-level estimates: Backstripping analysis of borehole data, onshore New Jersey, Basin Res., 16, 451465.
  • Villasante-Marcos, V., C. J. Hollis, G. R. Dickens, and M. J. Nicolo (2007), Rock magnetic properties across the Paleocene-Eocene Thermal Maximum in Marlborough, New Zealand, Geol. Acta, in press.
  • Weiss, B. P., et al. (2004), Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite, Earth Planet. Sci. Lett., 224, 7389.
  • Westerhold, T., U. Röhl, J. Laskar, I. Raffi, J. Bowles, L. J. Lourens, and J. C. Zachos (2007), On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect, Paleoceanography, 22, PA2201, doi:10.1029/2006PA001322.
  • Zachos, J. C., K. C. Lohmann, J. C. G. Walker, and S. W. Wise (1993), Abrupt climate change and transient climates during the Paleogene: A marine perspective, J. Geol., 101, 191213.
  • Zachos, J. C., et al. (2005), Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum, Science, 308, 16111615.
  • Zachos, J. C., et al. (2006), Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data, Geology, 34, 737740.