SEARCH

SEARCH BY CITATION

References

  • Antipov, Y. A., and V. V. Silvestrov (2004a), Second-order functional-difference equations. I.: Method of the Riemann-Hilbert problem on Riemann surfaces, Q. J. Mech. Appl. Math., 57, 245265.
  • Antipov, Y. A., and V. V. Silvestrov (2004b), Second-order functional-difference equations. II.: Scattering from a right-angled conductive wedge for E-polarization, Q. J. Mech. Appl. Math., 57, 267313.
  • Antipov, Y. A., and V. V. Silvestrov (2004c), Vector functional-difference equation in electromagnetic scattering, IMA J. Appl. Math., 69, 2769.
  • Demetrescu, C., C. C. Constantinou, and M. J. Mehler (1998a), Diffraction by a right-angled resistive wedge, Radio Sci., 33, 3953.
  • Demetrescu, C., C. C. Constantinou, M. J. Mehler, and B. V. Budaev (1998b), Diffraction by a resistive sheet attached to a two-sided impedance plane, Electromagnetics, 18, 315332.
  • Keller, J. B. (1962), The geometrical theory of diffraction, J. Opt. Soc. Am., 52, 116130.
  • Legault, S. R., and T. B. A. Senior (2002), Solution of a second-order difference equation using the bilinear relations of Riemann, J. Math. Phys., 43, 15981621.
  • Maliuzhinets, G. D. (1958), Excitation, reflection and emission of surface waves from a wedge with given face impedances, Sov. Phys. Dokl., 3, 752755.
  • Senior, T. B. A., and S. R. Legault (2000), Second-order difference equations in diffraction theory, Radio Sci., 35, 683690.
  • Senior, T. B. A., and J. L. Volakis (1995), Approximate Boundary Conditions in Electromagnetics, Inst. of Electr. Eng., London.