SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. A. Stegun (1965), Handbook of Mathematical Functions, Dover, New York.
  • Alù, A., and N. Engheta (2006), Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines, Phys. Rev. B, 74, 205436, doi:10.1103/PhysRevB.74.205436.
  • Burin, A. L., H. Cao, G. C. Schatz, and M. A. Ratner (2004), High quality optical modes in low-dimensional arrays of nanoparticles: Application to random lasers, J. Opt. Soc. Am. B, 21, 121131.
  • Burke, G. J. (1992), Numerical electromagnetics Code—NEC-4 method of moments, Rep. UCRL-MA-109338 Pt. 1, Lawrence Livermore Natl. Lab., Livermore, Calif.
  • Citrin, D. S. (2004), Coherent excitation transport in metal-nanoparticle chains, Nano Lett., 4, 15611565.
  • Collin, R. E. (1991), Field Theory of Guided Waves, 2nd ed., IEEE Press, New York.
  • Erdélyi, A. (1953), Higher Transcendental Functions, vol. II, McGraw-Hill, New York.
  • Foldy, L. L. (1945), The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67, 107119.
  • Gradshteyn, I. S., and I. M. Ryzhik (1994), Table of Integrals, Series, and Products, 6th ed., Academic, Boston, Mass.
  • Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos (2003), A doubly negative (DNG) composite medium composed of magneto-dielectric spherical particles embedded in a matrix, IEEE Trans. Antennas Propag., 51, 25962603.
  • Ishimaru, A. (1991), Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice-Hall, Englewood Cliffs, N. J.
  • Jackson, J. D. (1999), Classical Electrodynamics, 3rd ed., John Wiley, New York.
  • Johnson, P. B., and R. W. Christy (1972), Optical constants of the noble metals, Phys. Rev. B, 6, 43704379.
  • Lewin, L. (1947), The electrical constants of a material loaded with spherical particles, Proc. Inst. Electr. Eng., 94, 6568.
  • Lewin, L. (1981), Polylogarithms and Associated Functions, Elsevier, New York.
  • Linton, C. M. (2005), Schlömilch series that arise in diffraction theory and their efficient computation, technical report, Dep. of Math. Sci., Loughborough Univ., Loughborough, U.K. (Available at http://www-staff.lboro.ac.uk/%7Emacml1/schlomilch-techreport.pdf).
  • Linton, C. M. (2006), Schlömilch series that arise in diffraction theory and their efficient computation, J. Phys. A, 39, 33253339.
  • Maier, S. A., P. G. Kik, and H. A. Atwater (2003), Optical pulse propagation in metal nanoparticle chain waveguides, Phys. Rev. B, 67, 205402, doi:10.1103/PhysRevB.67.205402.
  • Panofsky, W. K. H., and M. Phillips (1962), Classical Electricity and Magnetism, 2nd ed., Addison-Wesley, Reading, Mass.
  • Park, S. Y., and D. Stroud (2004), Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation, Phys. Rev. B, 69, 125418, doi:10.1103/PhysRevB.69.125418.
  • Pendry, J. P. (2004), Negative refraction, Contemp. Phys., 45, 191202.
  • Shore, R. A., and A. D. Yaghjian (2004a), Scattering-matrix analysis of linear periodic arrays of short electric dipoles, Rep. AFRL-SN-HS-TR-2004-045, Air Force Res. Lab., Hanscom AFB, Mass.
  • Shore, R. A., and A. D. Yaghjian (2004b), Traveling electromagnetic waves on linear periodic arrays of small lossless penetrable spheres, In-House Rep. AFRL-SN-HS-TR-2004-044, Air Force Res. Lab., Hanscom AFB, Mass.
  • Shore, R. A., and A. D. Yaghjian (2005a), Traveling electromagnetic waves on linear periodic arrays of lossless spheres, Electron. Lett., 41(10), 578580.
  • Shore, R. A., and A. D. Yaghjian (2005b), Traveling electromagnetic waves on linear periodic arrays, IEICE Trans. Commun., E88-B(6), 23462352.
  • Shore, R. A., and A. D. Yaghjian (2006), Traveling electromagnetic waves on two- and three-dimensional periodic arrays of lossless acoustic monopoles, electric dipoles, and magnetodielectric spheres, In-House Rep. AFRL-SN-HS-TR-2006-0039, Air Force Res. Lab., Hanscom AFB, Mass.
  • Shore, R. A., and A. D. Yaghjian (2007), Attenuated electromagnetic traveling waves on infinite periodic arrays of lossless and lossy magnetodielectric spheres, report, Air Force Res. Lab., Hanscom AFB, Mass., in press.
  • Sihvola, A. (1999), Electromagnetic Mixing Formulas and Applications, IEE Press, London.
  • Simovski, C. R., A. J. Viitanen, and S. A. Tretyakov (2005), Resonator mode in chains of silver spheres and its possible application, Phys. Rev. E, 72, 066606, doi:10.1103/PhysRevE.72.066606.
  • Stratton, J. A. (1941), Electromagnetic Theory, McGraw-Hill, New York.
  • Sweatlock, L. A., S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman (2005), Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles, Phys. Rev. B, 71, 235408, doi:10.1103/PhysRevB.71.235408.
  • Tretyakov, S. (2003), Analytical Modeling in Applied Electromagnetics, Artech House, Boston, Mass.
  • Tretyakov, S. A., and A. J. Vitanen (2000), Plane waves in regular arrays of dipole scatterers and effective-medium modeling, J. Opt. Soc. Am. A, 17(10), 17911797.
  • Twersky, V. (1961), Elementary function representations of Schlömilch series, Arch. Rational Mech. Anal., 8, 323332.
  • Vitanen, A. J., and S. A. Tretyakov (2005), Metawaveguides formed by arrays of small resonant particles over a ground plane, J, Opt. A Pure Appl. Opt., 7, S133S140.
  • Watson, G. N. (1962), A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, Cambridge, U. K.
  • Yaghjian, A. D. (1980), Electric dyadic Green's functions in the source region, Proc. IEEE, 68, 248263. (Errata, Proc. IEEE, 69, 282–285, 1981.).
  • Yaghjian, A. D. (2002), Scattering-matrix analysis of linear periodic arrays, IEEE Trans. Antennas Propag., 50, 10501064.
  • Yaghjian, A. D. (2007), Bidirectionality of reciprocal, lossy or lossless, uniform or periodic waveguides, IEEE Microwave Wireless Components Lett., 17, 480482.
  • Yatsenko, V., S. Maslovski, and S. Tretyakov (2000), Electromagnetic interaction of parallel arrays of dipole scatterers, Prog. Electromagn. Res., 25, 285307.