SEARCH

SEARCH BY CITATION

References

  • Antipov, Y. A., and V. V. Silvestrov (2006), Electromagnetic scattering from an anisotropic impedance half-plane at oblique incidence: the exact solution, Q. J. Mech. Appl. Math., 59(2), 211251.
  • Avdeev, A. D. (1994), On the special function of the problem of diffraction by a wedge in an anisotropic plasma, J. Commun. Technol. Electr., 39(10), 7078.
  • Babich, V. M., M. A. Lyalinov, and V. E. Grikurov (2004), Sommerfeld-Malyuzhinets Method in Diffraction Theory, St. Petersburg Univ. Press, St. Petersburg, Russia.
  • Bobrovnikov, M. S., and V. V. Fisanov (1988), Diffraction of Waves in Angular Regions, Tomsk Univ. Press, Tomsk, Russia.
  • Budaev, B. V., and D. B. Bogy (2006), Diffraction of a plane skew electromagnetic wave by a wedge with general anisotropic impedance boundary conditions, IEEE Trans. Antennas Propag., 54(5), 15591567.
  • Buldyrev, V. S., and M. A. Lyalinov (2001), Mathematical Methods in Modern Electromagnetic Diffraction Theory, Int. Ser. Monogr. Adv. Electromagn., vol. 1, Science House, Tokyo.
  • Daniele, V. G., and G. Lombardi (2006), Wiener-Hopf solution for impenetrable wedges at skew incidence, IEEE Trans. Antennas Propag., 54(9), 24722485.
  • Lyalinov, M. A., and N. Y. Zhu (1999), Diffraction of a skewly incident plane wave by an anisotropic impedance wedge—A class of exactly solvable cases, Wave Motion, 30(3), 275288.
  • Lyalinov, M. A., and N. Y. Zhu (2003a), Exact solution to diffraction problem by wedges with a class of anisotropic impedance faces: Oblique incidence of a plane electromagnetic wave, IEEE Trans. Antennas Propag., 51(6), 12161220.
  • Lyalinov, M. A., and N. Y. Zhu (2003b), A solution procedure for second-order difference equations and its application to electromagnetic-wave diffraction in a wedge-shaped region, Proc. R. Soc., Ser. A., 459(2040), 31593180.
  • Lyalinov, M. A., and N. Y. Zhu (2006), Diffraction of a skew incident plane electromagnetic wave by an impedance wedge, Wave Motion, 44(1), 2143.
  • Senior, T. B. A., and J. L. Volakis (1995), Approximate Boundary Conditions in Electromagnetics, Electromagn. Waves Ser., vol. 41, Inst. of Electr. Eng., London.
  • Sommerfeld, A. (1896), Mathematische Theorie der Diffraction, Math. Ann., 47, 317374.
  • Tuzhlin, A. A. (1973), The theory of Malyuzhinets' inhomogeneous functional equations, Diff. Uravn., 9, 18751888.