SEARCH

SEARCH BY CITATION

References

  • Albani, M., A. Italiano, R. Gardelli, and G. La Cono (2005a), Regular-integrand line-integral representation for the PO scattered field, suitable for an efficient numerical integration, paper presented at IEEE AP-S International Symposium 2005, Washington, D. C.
  • Albani, M., A. Italiano, R. Gardelli, and G. La Cono (2005b), Line-integral representation for the PO field scattered by a faceted object, illuminated by a complex point source, paper presented at 9th International Conference on Electromagnetics in Advanced Applications, IEEE Antennas and Propag. Soc., Torino, Italy.
  • Chou, H.-T., and P. H. Pathak (1997), Uniform asymptotic solution for electromagnetic reflection and diffraction of an arbitrary Gaussian beam by a smooth surface with an edge, Radio Sci., 32(4), 13191336.
  • Chou, H.-T., and P. H. Pathak (2004), Fast Gaussian beam based synthesis of shaped reflector antennas for contoured beam applications, IEE Proc. Microw. Antennas Propag., 151(1), 1320.
  • Chou, H.-T., P. H. Pathak, and R. J. Burkholder (2001), Novel Gaussian beam method for the rapid analysis of large reflector antennas, IEEE Trans. Antennas Propag., 49(6), 880893.
  • Deschamps, G. A. (1971), Gaussian beams as a bundle of complex rays, Electron. Lett., 7(23), 684685.
  • Felsen, L. B. (1976), Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams, in Symposia Matematica, Istituto Nazionale di Alta Matematica, vol. XVIII, pp. 4056, Academic, London.
  • Green, A. C., H. L. Bertoni, and L. B. Felsen (1979), Properties of the shadow cast by a half-screen when illuminated by a Gaussian beam, J. Opt. Soc. Am., 69(11), 15031508.
  • Heyman, E., and L. B. Felsen (2001), Gaussian beam and pulsed-beam dynamics: Complex-source and complex-spectrum formulations within and beyond paraxial asymptotics, J. Opt. Soc. Am. A, 18(7), 15881611.
  • Heyman, E., and R. Ianconescu (1995), Pulsed beam diffraction by a perfectly conducting wedge: Local scattering models, IEEE Trans. Antennas Propag., 43(5), 519528.
  • Keller, J. B. (1962), Geometrical theory of diffraction, J. Opt. Soc. Am., 52(2), 116130.
  • Knott, E. F. (1985), The relationship between Mitzner's ILDC and Michaeli's equivalent currents, IEEE Trans. Antennas Propag., AP-33(1), 112114.
  • Kouyoumjian, R. G., and P. H. Pathak (1974), A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE, 62(11), 14481461.
  • Maciel, J. J., and L. B. Felsen (1989), Systematic study of fields due to extended apertures by Gaussian beam discretization, IEEE Trans. Antennas Propag., 37(7), 884892.
  • Michaeli, A. (1984), Equivalent edge currents for arbitrary aspects of observation, IEEE Trans. Antennas Propag., AP-32(3), 252258. (Correction (1985), IEEE Trans. Antennas Propag., AP-33(2), 227.).
  • Mitzner, K. M. (1974), Incremental length diffraction coefficients, Tech. Rep. AFAL-TR-73-296, Northrop Corp., Aircraft Div., Hawthorne, Calif.
  • Shin, S. Y., and L. B. Felsen (1974), Gaussian beams in anisotropic media, Appl. Phys., 5, 239250.
  • Shore, R. A., and A. D. Yaghjian (1988), Incremental Diffraction Coefficients for Planar Surfaces, IEEE Trans. Antennas Propag., 36(1), 5570. (Correction, IEEE Trans. Antennas Propag., 37(10), 1342, 1989.).
  • Suedan, G. A., and E. V. Jull (1989), Beam Diffraction by half planes and wedges: Uniform and asymptotic solutions, J. Electromagn. Waves Appl., 3(1), 1726.
  • Suedan, G. A., and E. V. Jull (1991), Three-dimensional scalar beam diffraction by a half plane, Comput. Phys. Commun., 68, 346352.
  • Tiberio, R., A. Toccafondi, A. Polemi, and S. Maci (2004), Incremental theory of diffraction: A new-improved formulation, IEEE Trans. Antennas Propag., 52(9), 22342243.
  • Ufimtsev, P. Y. (1991), Elementary edge waves and the physical theory of diffraction, Electromagnetics, 11(2), 125159.