SEARCH

SEARCH BY CITATION

References

  • Abrahams, I. D. (2000), The application of Pade approximants to Wiener-Hopf factorization, IMA J. Appl. Math., 65, 257281, doi:10.1093/imamat/65.3.257.
  • Bart, H., I. Goheberg, and M. A. Kaashoek (1979), Minimal Factorization of Matrix and Operator Functions, Birkhuser Werlag, Basel, Switzerland.
  • Budaev, B. (1995), Diffraction by Wedges, Longman, New York.
  • Daniele, V. (1984), On the solution of vector Wiener-Hopf equations occurring in scattering problems, Radio Sci., 19, 11731178.
  • Daniele, V. (2003), The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle, SIAM J. Appl. Math., 63, 14421460, doi:10.1137/S0036139901400239.
  • Daniele, V. (2004), An introduction to the Wiener-Hopf technique for the solution of electromagnetic problems, Int. Rep. ELT-2004-1, Politec. di Torino, Torina, Italy. (Available at http://www.eln.polito.it/staff/daniele.).
  • Daniele, V., and G. Lombardi (2006), Wiener-Hopf solution for impenetrable wedges at skew incidence, IEEE Trans. Antennas Propag., AP-54, 24722485, doi:10.1109/TAP.2006.880723.
  • Gohberg, I. C., and M. G. Krein (1960), Systems of integral equation on a half line with kernels depending on the difference of arguments, Trans. Am. Math. Soc., Ser. 2, 14, 217287.
  • Gohberg, I. C., and N. Krupnik (1992), One-Dimensional Linear Singular Integral Equation, vol. 1, Birkhäuser, Boston.
  • Hashimoto, M., M. Idemen, and O. A. Tretyakov (1993), Analytical and Numerical Methods in Electromagnetic Wave Theory, Science House, Tokyo.
  • Jones, D. S. (1979), Methods in Electromagnetic Wave Propagation, Clarendon, Oxford, U. K.
  • Kantorovich, L. V., and V. I. Krylov (1958), Approximate Methods of Higher Analysis, P. Noordhoff, Groningen, Netherlands.
  • Lyalinov, M. A., and N. Y. Zhu (2005), Diffraction of a skew incident plane electromagnetic wave by a wedge with axially anisotropic impedance faces, paper presented at 28th URSI General Assembly, Int. Union of Radio Sci., New Delhi, India.
  • Noble, B. (1988), Methods Based on the Wiener-Hopf Technique, Chelsea, New York.
  • Vekua, N. P. (1967), Systems of Singular Integral Equations, P. Noordhoff, Groningen, Netherlands.
  • Weinstein, L. A. (1969), The Theory of Diffraction and the Factorization Method, Golem, Boulder, Colo.
  • Zhu, N. Y., and M. A. Lyalinov (2004), Diffraction of a normally incident plane wave by an impedance wedge with its exterior bisected by a semi-infinite impedance sheet, IEEE Trans. Antennas Propag., AP-52, 27532758.