SEARCH

SEARCH BY CITATION

References

  • Antipov, Y. A., and V. V. Silvestrov (2006), Electromagnetic scattering from an anisotropic half-plane at oblique incidence: The exact solution, Q. J. Mech. Appl. Math., 59, 211251.
  • Bliss, G. A. (2004), Algebraic Functions, Dover, Mineola, N. Y.
  • Bresler, A. D., and N. Marcuvitz (1956), Operator methods in electromagnetic field theory, Rep. R-495, 56, PIB-425, pp. 3436, MRI Polytech. Inst. of Brooklyn, New York.
  • Budaev, B. (1995), Diffraction by Wedges, Longman Sci. and Tech., Harlow, U.K.
  • Daniele, V. (1971), Wave propagation in stratified multifluid plasma, Alta Frequenza, 40, 904914.
  • Daniele, V. (2003), The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle, SIAM J. Appl. Math., 63(4), 14421460.
  • Daniele, V. (2004a), An introduction to the Wiener-Hopf technique for the solution of electromagnetic problems, Internal Rep. ELT-2004-1, Politecn. di Torino, Torino, Italy. (Available at http://www.eln.polito.it/staff/daniele).
  • Daniele, V. (2004b), The Wiener-Hopf technique for wedge problems, Internal Rep. ELT-2004-2, Politecn. di Torino, Torino, Italy. (Available at http://www.eln.polito.it/staff/daniele).
  • Daniele, V. (2006), Electromagnetic propagation in plane stratified regions, Internal Rep. ELT-2006, Politecn. di Torino, Torino, Italy. (Available at http://www.eln.polito.it/staff/daniele).
  • Daniele, V., and G. Lombardi (2006), Wiener-Hopf solution for impenetrable wedges at skew incidence, IEEE Trans. Antennas Propag., 54(9), 24722485.
  • Daniele, V., and G. Lombardi (2007), Fredholm factorization of Wiener-Hopf matrix kernels, Radio Sci., doi:10.1029/2007RS003673, in press.
  • Felsen, L. B., and N. Marcuvitz (1973), Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, N. J.
  • Graglia, R. D., P. L. E. Uslenghi, and R. E. Zich (1991), Dispersion relation for bianisotropic materials and its symmetry properties, IEEE Trans. Antennas Propag., AP-39(1), 8390.
  • Hurd, R. A., and E. Luneburg (1985), Diffraction by an anisotropic impedance half-plane, Can. J. Phys., 63, 11351140.
  • Hurd, R. A., and S. Przezdziecki (1981), Diffraction by a half-plane perpendicular to the distinguished axis of gyrotropic medium (oblique incidence), Can. J. Phys., 59, 403424.
  • Hurd, R. A., and S. Przezdziecki (1985), Half-plane diffraction in a gyrotropic medium, IEEE Trans. Antennas Propag., AP-33(8), 813822.
  • Jull, E. V. (1964), Diffraction by a conducting half-plane in an anisotropic plasma, Can. J. Phys., 42, 14551468.
  • Kong, J. A. (1975), Theory of Electromagnetic Waves, p. 10, John Wiley, New York.
  • Lüneburg, E., and A. H. Serbest (2000), Diffraction of an obliquely incident plane wave by a two-face impedance half plane: Wiener-Hopf approach, Radio Sci., 35, 13611374.
  • Lyalinov, M. A., and N. Y. Zhu (2006), Diffraction of a skew incident plane electromagnetic wave by an impedance wedge, Wave Motion, 44(1), 2143.
  • Paul, C. R. (1975), Useful matrix chain parameter identities for the analysis of multiconductor transmission lines, IEEE Trans. Microwave Theory Tech., 23(9), 756760.
  • Poincaré, H. (1892), Sur la polarization par diffraction, Acta Math., 16, 297339.
  • Przezdziecki, S. (2000), Half-plane diffraction in a chiral medium, Wave Motion, 32, 157200.
  • Senior, T. B. A. (1978), Some problems involving imperfect half planes, in Electromagnetic Scattering, edited by P. L. E. Uslenghi, pp. 185219, Academic, New York.
  • Senior, T. B. A., and J. L. Volakis (1995), Approximate boundary Conditions in Electromagnetics, Inst. of Electr. Eng., London.
  • Seshadri, S. R., and A. K. Rajagopal (1963), Diffraction by a perfectly conducting semi-infinite screen in an anisotropic plasma, IEEE Trans. Antennas Propag., AP-11, 497502.
  • Sommerfeld, A. (1896), Mathematische theorie der diffraktion, Math. Ann., 47, 317341.